Earlier this month, Apple's new guru Tim Cook announced a number of new products, the most interesting of which was an improved version of the MacBook Air. During his talk, Cook focused too much on features and functions that are no longer as unique as Apple would have us believe. So one of the Air's most key and intriguing innovations, a technology with the potential to profoundly change the world of mobile devices over the next few years, has gone largely unnoticed. We're talking about the new USB Type-C connector and the exceptionally wide range of capabilities it offers.

What is USB Type-C?

As the name of the standard suggests, it is an evolutionary refinement of the well-known Universal Serial Bus (USB) format, which is currently one of the most common interfaces in the field of computer peripherals and mobile technologies. Type-C not only provides backward compatibility with previous versions of USB, but also combines them in a new and unique way. So one cable (interface) can transmit data, electricity and even video.

The size of the Type C connector is smaller than the chronologically oldest (and most widespread) Type-A standard, but slightly larger than the microUSB (Type Micro-B) format. Unlike its predecessors, however, the new standard is more universal - the Type-C cable connector can be connected to the port on either side and there are identical plugs on both sides of the cable. At the same time, this limits backward compatibility with existing Type-A and Type-B formats. In other words, you will not be able to connect a Type-A or B cable to a Type-C port and vice versa.

But the Type-C port can be easily configured so that it can perform many different functions. For example, a USB Type-C cable can easily transmit an HDMI or DisplayPort signal, although at the moment this possibility is still purely theoretical.

Type-C? Isn't this USB 3.1?

Definitely not! USB 3.1 is the latest version of the data transfer standard, which (at least in theory) should double peak data transfer speeds from 5 Gbps (USB 3.0) to 10 Gbps. In addition, 3.1 is fully backward compatible with previous versions of the standard: 3.0 and 2.0.

In this vein, the Type-C module could offer both USB 3.1 and some of the older standards. For example, the USB Type-C Digital AV Multiport adapter, which Apple will offer as an additional accessory for the new MacBook, according to the specification supports “USB 3.1 Gen 1” with a theoretical maximum throughput of 5 Gbps, i.e. almost identical to the USB 3.0 standard. And one of the first devices to support Type-C, which, unlike the MacBook 2015, is already available on the market, the Nokia N1 tablet, uses an even older USB 2.0 for data transfer and charging.

Type-C = USB Power Delivery?

Not again. Power Delivery is part of the latest USB standard specification and is the ability to deliver up to 100W of power to any connected device, although it can also be used to transfer data. For comparison, the currently most popular USB 2.0 standard, which is used in almost all smartphones and tablets, provides up to 2.5 W of power. This is one of the reasons why you can't charge most modern laptops via USB - they require voltage between 20 and 65 W. However, with the new Power Delivery connector, you can not only safely charge your future laptop via USB, but at the same time watch 4K video transmitted to an external monitor connected with the same cable.

So what is the connection between Type-C and USB Power Delivery? Here we are again talking about the theoretical possibility of support. In other words, the Type-C connector can offer USB Power Delivery capabilities if the manufacturer of the corresponding module provides for it. Otherwise, just because you have a Type-C cable doesn't mean it supports Power Delivery as well.

Type-C today? Or rather tomorrow?

Despite its many, beautiful promises, for now the new MacBook is still just a bunch of shiny specs. Unlike Apple, however, a number of companies are already offering devices with Type-C support on the market. The first was Nokia with the aforementioned N1 tablet.

SanDisk recently revealed its first flash drive based on the new standard. However, to ensure backwards compatibility with older USB formats, this 32GB device also includes an additional Type-A connector - a practice that will likely be seen a lot during the transition to the new standard.

As part of the January CES 2015 exhibition, a prototype of a docking station for laptops was demonstrated, which offers a Type-C connector for charging and video output to an external 4K display. And LaCie just recently announced that it intends to offer a series of Type-C external hard drives with capacities of 500 GB, 1 and 2 TB.

Have a great day!

Why is the new USB standard really better than the usual USB ports on phones, tablets or laptops, and which devices already have USB Type-C connectors? The CHIP editors answer all these questions.

First, some important information: the designations USB Type-C and USB 3.1, as they say, go hand in hand, since they actually mean the same thing. When the USB 3.1 number is used, it is usually referring to the data transfer speed.

If you come across the name USB Type-C, it usually refers directly to the type of connector for connecting devices. First, let's compare the previous USB 3.0 standard with the new USB 3.1. You will find all the details in the table below.

Comparison of USB 3.0 and USB 3.1

The best devices with USB Type-C

What USB Type-C devices are currently available? The first of these was the 12-inch MacBook, in which this connector was the only one. The current Google phones Nexus 6P and 5X are also equipped with USB 3.1 - and in general, more and more manufacturers are integrating a port of the new standard into their smartphones.

In the following table we have compiled for you a list of the most interesting devices with a USB Type-C interface.

USB Type-C: these devices already have it

The USB connector can no longer be connected incorrectly

USB Type-C: Type C plug (left) can be used on either side

That's what makes the USB Type-C connector incredibly convenient: it's symmetrical. You no longer have to think about how hard it will take to insert the plug into the socket correctly. Previously, this connector property was a great advantage of Apple products, iPad or iPhone, but now it is becoming available to the masses of users. This cable can be inserted in either direction.

Let us mention one more significant advantage over the USB 3.0 standard: due to the maximum transmitted power increased to 100 W, various peripheral devices, for example, monitors or speakers, will be able to be connected via USB 3.1 in the future without an additional power source. The current strength of 5 A also significantly reduces the charging time of a mobile phone.

It is impossible to imagine a modern person without electronic devices. Smartphones, tablets, music players and laptops are found in almost every family today. Each of these devices has its own use and therefore each functions in its own unique way. However, there is something that in one form or another unites them all. And this is the presence of USB ports.

One day in 1994, 7 of the world's leading technology companies created a new standard for connecting computer peripherals. This is how the Universal Serial Bus appeared, which for short is called USB.

Today it is truly a universal standard, and it is difficult to find an electronic device that does not have a USB port of one type or another. But how do you know which cable is suitable for it? This guide will help you determine the type of USB connector and select the appropriate plug.

Variety of options

Almost all modern computers and electronic devices have some form of USB connection and come complete with the appropriate cables. Does it matter which one is used, and what are all these differences for? This is really important for now, but it may change in the future.

In the mid-1990s. The universal bus became an industry standard, which made it possible to streamline the connection of computer peripherals. It has replaced a number of earlier interfaces and is now the most popular connector type in consumer devices.

However, it is still difficult to understand all the varieties of USB.

If the standard was meant to be universal, why are there so many different types? Each of them serves a different purpose, mainly ensuring compatibility when new devices with better specifications are released. Below are the most common types of USB connectors.

Type-A

Most cables and peripherals (such as keyboards, mice, and joysticks) have a Type A connector. Personal computers, laptops, and netbooks typically have multiple ports of this shape. Additionally, many other devices and power adapters use them for data transfer and/or charging. The connector has a flat rectangular shape and is the most recognizable and used. The USB Type-A pinout is as follows:

  1. +5V - voltage +5 V.
  2. D- - data.
  3. D+ - data.
  4. GND - ground.

All versions of USB standards retain the same form factor for Type-A, so they are mutually compatible. However, USB 3.0 connectors have 9 pins instead of 4, which are used to provide faster data transfer speeds. They are located so as not to interfere with the operation of pins of previous versions of the standard.

Type-B

This is an almost square-shaped connector that is mainly used to connect printers, scanners and other devices with their own power to a computer. Sometimes it can be found on external drives. These days, this type of connector is much less common than Type-A connections.

The connection form in version 3.0 of the standard has been changed, so backward compatibility is not supported, although the new type of ports accepts older modifications of plugs. The reason for this is that Type-B USB 3.0 has 9 pins for faster data transfer, while Powered-B has 11 pins, 2 of which provide additional power.

Again, as with Type-A, physical compatibility between different versions does not indicate support for speed or functionality.

Basic Concepts

Before attempting to understand the differences between types A and B, it is necessary to understand the concepts of host, receptor, and port.

The slot located on the front or back of the computer case (host) into which one end of the USB cable is inserted is called a port. An electronic device that needs to be charged or to which data needs to be transferred (such as a smartphone or tablet) is called a receptor.

The most popular USB standard is Type A, which can be seen at the end of almost every USB cable inserted into a host slot today. Most often, desktop computers, game consoles and media players are equipped with Type-A ports.

Type B connectors are found at the end of a regular USB cable that connects to a peripheral device, such as a smartphone, printer, or hard drive.

Benefits of USB

The standard simplifies the installation and replacement of equipment by reducing all communications to serial data transmission over twisted pair cables and identification of the connected device. If you add grounding and power here, you get a simple 4-wire cable, inexpensive and easy to manufacture.

The standard defines the way the peripheral interacts with the host. If you are not using USB On the Go (OTG), which allows you to limit the capabilities of the host, a direct connection is made. The USB device is not able to initiate communication, only the host can do this, so even if you have a cable with the appropriate connectors, the connection will not work without it. Additionally, since wires carry both power and data, connecting two hosts without an intermediary device can be disastrous, causing high currents, short circuits, and even fires.

Mini

The connector was standard for mobile devices before the advent of micro-USB. As the name suggests, mini-USB is smaller than normal and is still used in some cameras. The connector has 5 pins, of which 1 serves as an identifier for OTG support, allowing mobile devices and other peripherals to act as a host. The USB Mini pinout is as follows:

  1. +5V - voltage +5 V.
  2. D- - data.
  3. D+ - data.
  4. ID - host/receptor identifier.
  5. GND - ground.

Micro

This is the current connector standard for mobile and portable devices. It has been adopted by almost every manufacturer except Apple. Its physical dimensions are smaller than Mini-USB, but it supports high data transfer rates (up to 480 Mbps) and OTG capabilities. The shape is easily recognizable thanks to the compact 5-pin design.

The Lightning connector is not a USB standard, but rather an Apple proprietary connection for iPad and iPhone. It is similar to micro USB and is compatible with all Apple devices made after September 2012. Older models use a different and much larger proprietary connector.

Type-C

It is a reversible connector that promises faster data transfer and more power than previous types. It is increasingly used as a standard for laptops and even some phones and tablets, and has been approved by Apple for Thunderbolt 3.

Type C is a new solution and promises to be everything to everyone. It is smaller, faster and can receive and transmit much more power than previous versions.

Apple shocked the world when it introduced a new MacBook with a single USB-C port. This will likely be the start of a trend.

You can read more about USB-C at the end of this article.

Nuances of micro-USB

Those of you who have an Android phone or tablet definitely have a micro USB cable as well. Even the most die-hard Apple fans can't avoid them, as they are the most common type of connector used for things like external power boxes, speakers, etc.

Owners of many gadgets may find that these cables become plentiful over time, and since they are usually interchangeable, you may never have to buy them separately unless they get lost or fail all at once.

When shopping for a micro-USB cable, it may be tempting to go for the cheapest option, but as is often the case, this is a bad idea. Poor quality wires and plugs can easily break and become useless. Therefore, it is better to save yourself from future problems by purchasing a quality product from a reputable manufacturer, even if it costs a little more.

Another thing worth mentioning is the cable length. The short ones are great for transport, but they often mean you have to sit on the floor next to an outlet while your phone charges. Conversely, a cable that is too long can be awkward to carry, can become tangled, and can potentially cause injury.

0.9m is a good length for a charging cable. It allows you to keep your phone while connected to the battery in your bag or pocket, ideal for playing Pokemon Go or simply using your phone while traveling for long periods of time.

If you frequently charge from third-party USB ports to comply with safety precautions or when the device charges slowly, a special cable that prevents data transfer can solve the problem. An alternative is a network adapter.

Another issue that can be problematic is the fact that the connectors on most USB cables (except USB-C) are not interchangeable and often require several attempts to connect correctly. Some manufacturers have attempted to fix this. However, not all devices support this feature.

What is USB OTG?

It is a standard that allows portable and mobile devices to act as hosts.

Let's say you have an external drive, a laptop and a smartphone. What do you need to do to copy files from the disk to your phone? The easiest way is to move them from an external drive to a laptop, and from there to a smartphone. USB OTG allows you to connect the drive directly to your phone, thereby bypassing the need for an intermediary.

And that is not all! There are many other ways to use OTG. You can connect any USB device to your smartphone, be it a flash drive, wireless mouse, keyboard, headphones, card readers, game controllers, etc.

USB cables

In a connected world, wired connections between various electronic devices play an important role. The demand for them is so high that tens of millions of USB cables are produced every year around the world.

Technologies are constantly evolving and improving, as are the associated peripheral devices. The same trend of upgrades holds true for USB connectors, but with so many versions and types of USB standards, it can become difficult to keep track of which USB is best suited for which functions. To do this, it is necessary to understand their basic differences.

USB types

The different versions of USB, such as 2.0 and 3.0, relate to the functionality and speed of the USB cable, and their type (such as A or B) mainly refers to the physical design of the connectors and ports.

The USB 1.1 standard (1998) is designed for a throughput of 12 Mbps, a voltage of 2.5 V and a current of 500 mA.

USB 2.0 (2000) is distinguished by the “HI-SPEED” marking on the USB logo. Provides speeds of 480 Mbps at a voltage of 2.5 V and a current of 1.8 A.

Adopted in 2008, USB 3.0 supports 5 Gbps at 5 V and 1.8 A.

USB 3.1, available since 2015, provides speeds of 10 Gbps at 20 V and 5 A.

The latest standard provides higher throughput and is mostly backward compatible with earlier versions. Standard-A connectors are identical to previous versions of Type-A, but are usually colored blue to distinguish them. They are fully backwards compatible, but the increased speeds are only available if all components are USB 3 compatible. The Standard-B and micro versions feature additional pins for increased throughput and are not compatible with previous versions. Older USB Type-B and Micro-B cables and connectors can be used with USB 3.0 ports, but will not improve speed.

Type C Connector Specifications

The name made headlines in tech magazines around the world when Apple released the 12” Macbook. This is the first laptop to include a Type-C design.

From a physical point of view, the connector is similar to the existing USB Micro-B variant. Its dimensions are 8.4 x 2.6 mm. Thanks to its small form factor, it can easily fit into even the smallest peripherals used today. One of the many advantages of Type-C over other existing solutions is that it allows connections in reverse orientation, meaning the plug will always be inserted correctly on the first try! The connector is designed in such a way that you don't have to worry about it being upside down.

Type-C supports the USB 3.1 standard and provides a maximum speed of 10 Gbps. It also has a significantly higher power output of up to 100W at 20V and 5A. Since laptops typically consume 40-70W, this means Type C easily covers their power requirements. Another functionality offered by USB Type-C is bidirectional power. In other words, you can not only charge your smartphone through a laptop, but also vice versa.

Type-C has received rave reviews from users around the world and has appeared in the popular Chromebook Pixel and Nexus 6P smartphones, as well as the Nokia N1 tablet.

We can confidently say that in the coming years all electronic devices will be equipped with ports of this type. This will make working with them easy and convenient. All you need is a single Type-C cable, which will eventually eliminate the tangled tangle of wires in your desk drawer.

Although the specifications were first published in 2014, the technology only really took off in 2016. Today, it has become a viable replacement not only for older USB standards, but also for others such as Thunderbolt and DisplayPort. The new Type-C audio solution is also a potential replacement for the 3.5mm headset jack. Type C is closely intertwined with other new standards: USB 3.1 provides more bandwidth and USB Power Delivery - better power delivery.

Connector shape

USB Type-C is a new tiny connector that's barely the size of a microUSB. It supports various new standards such as USB 3.1 and USB PD.

The usual connector that everyone is familiar with is Type-A. Even after the transition from USB 1.0 to 2.0 and further to modern devices, it remained the same. The connector is just as chunky as before and only connects when oriented correctly (which obviously never works the first time). But as devices got smaller and thinner, massive ports simply weren't suitable anymore. This led to many other forms of USB connectors such as Mini and Micro.

This inconvenient array of connectors of various shapes for devices of all sizes is finally becoming a thing of the past. Type C is the new standard of very small size. It is about a third of the old USB Type-A. This is a single standard that all devices must use, so to connect an external drive to a laptop or charge a smartphone from a charger, you only need one cable. This tiny connector is small enough to fit into an ultra-thin smartphone, but powerful enough to connect all your peripherals. The cable itself has identical Type C connectors on both ends.

Type-C has many advantages. The orientation of the connector doesn't matter, so you no longer have to flip the plug over and over again trying to find the right position. This is a single form of USB connector that everyone should accept, so you don't have to have a lot of different USB cables with different plugs for different devices. And there won’t be many different ports taking up scarce space on increasingly thin gadgets.

What's more, Type-C connectors can also support multiple protocols using "alternate modes" which allow you to have adapters capable of outputting HDMI, VGA, DisplayPort, or other types of connections from that single connection. A good example of this is the Apple Multiport Adapter, which allows you to connect HDMI, VGA, USB Type-A and Type-C. Thus, the many connectors on regular laptops can be reduced to one type of port.

Nutrition

The USB PD specification is also closely intertwined with Type-C. Currently, a USB 2.0 connection provides up to 2.5W of power. This is only enough to charge your phone or tablet. The specification, supported by the USB-C standard, provides power supply of up to 100 W. This connection is bidirectional, so the device can both charge and charge through it. In this case, data transmission can occur simultaneously. The port allows you to charge even a laptop, which usually requires up to 60 W.

Apple's MacBook and Google's Chromebook Pixel use USB-C for charging, eliminating all proprietary power cables. At the same time, it becomes possible to charge laptops from portable batteries, which are usually used to charge smartphones and other electronics. And if you connect the laptop to an external display powered from the mains, then its battery will be charged.

However, keep in mind that the presence of a Type C connector does not automatically support USB PD. Therefore, before purchasing devices and cables, you need to make sure that they are compatible with both standards.

Transfer rates

USB 3.1 is the latest Universal Serial Bus standard with a theoretical throughput of 10 Gbps, which is twice the data transfer speed of first-generation Thunderbolt and USB 3.0.

But Type-C is not the same as USB 3.1. This is just the shape of the connector, and the technology behind it can be based on standards 2.0 or 3.0. For example, the Nokia N1 tablet uses USB Type C version 2.0. However, these technologies are closely related. When purchasing, you just need to pay attention to the details and make sure that the device or cable you are purchasing supports the USB 3.1 standard.

backward compatibility

The physical Type C connector, unlike the basic standard, is not backward compatible. You can't plug older USB devices into today's tiny Type-C port, and you can't plug a USB-C plug into a larger, older port. But this does not mean that you will have to get rid of all the old peripherals. USB 3.1 is still compatible with previous versions, so you only need a physical USB-C adapter. And you can already connect old devices to it directly.

In the near future, many computers will have both Type-C USB connectors and larger Type-A connectors, like the Chromebook Pixel. This way, users will be able to gradually migrate from older devices by connecting new ones to USB Type-C. But even if the computer is manufactured with only Type C ports, adapters and hubs will fill this gap.

Type-C is a worthy upgrade. Although this port has already appeared in laptops and some smartphones, this technology is not limited to them. Over time, all types of devices will be equipped with it. One day, the standard could even replace the Lightning connector used in iPhones and iPads. Apple's port doesn't have many advantages over USB Type-C, other than the fact that the technology is patented and the company can charge a licensing fee.

It rarely happens that one extra letter in the name of a standard threatens to revolutionize the world of data transfer interfaces and gadgets, but the emergence of the latest version of USB 3.1 Type-C This seems to be exactly the case. What does the next update of the good old USB interface promise to bring us?

  • Data transfer rate up to 10 GBps
  • Possibility of powering devices with power consumption from the port up to 100W
  • Connector dimensions comparable to micro-USB
  • The symmetry of the connector - it does not have a top or bottom, which means there is no key, which often leads to damage to both the connectors themselves and the gadgets connected through them
  • Using this interface, you can power devices with voltage up to 20 volts
  • There are no longer different types of connectors - A and B. Both ends of the cable have exactly the same connectors. Both data and power supply can be transmitted through the same connector in both directions. Depending on the situation, each connector can act as a master or slave
  • We are promised that the connector design can withstand up to 10,000 connections
  • It is possible to use this interface for direct connection instead of some other widely used interfaces for fast data exchange.
  • The standard is compatible from top to bottom with both the regular USB 3 interface and its younger brothers. Of course not directly, but with the help of an adapter it is possible to connect, say, a USB 2.0 drive through it
Below the cut, I will try to break down the topic piece by piece - starting from the design of the connector and cable, and ending with a brief overview of equipment profiles and new chips to support the capabilities of this interface. I thought for a long time about which platform to post the article on, because all the previous ones concerning this topic were published on GT, but my publication contains so many technical details that it will be more useful not for geeks, but for potential developers, who should start taking a closer look at it today. That’s why I took the risk of posting the article here.

I will not touch on the history of the development of the USB interface; this topic is not poorly developed in this comic in the sense of history in pictures.

Electronics - the science of contacts

To begin with, comparative photos of today's hero in the company of honored ancestors.

The USB Type-C connector is slightly larger than the usual USB 2.0 Micro-B, but noticeably more compact than the dual USB 3.0 Micro-B, not to mention the classic USB Type-A.
The dimensions of the connector (8.34×2.56 mm) allow it to be used without any particular difficulties for devices of any class, including smartphones and tablets.


The signal and power pins are placed on a plastic insert; perhaps this is its weakest point in the central part of the connector. The USB Type-C contact group contains 24 pins. Let me remind you that USB 1.0/2.0 had only 4 pins, and USB 3.0 connectors already required 9 pins.



If you look closely at the picture on the left, you can see that the contacts have different lengths. This ensures their closure in a certain sequence. In the picture in the center we see the presence of latches that should hold the plugged-in cable and provide a tactile click during the connection and disconnection process. The right graph shows the dependence of the force during the process of inserting and removing the connector.

The peaks that we see on it are the moments when the latch is triggered.

It can be stated that the developers of the standard have done, if not everything, then almost everything to make the connector as convenient and reliable as possible: it is inserted from either end and from either side with a noticeable click. According to them, he is able to survive this procedure more than 10 thousand times.

Many-faced symmetrical Janus

An extremely pleasant and useful feature of USB-C is the symmetrical design of the connector, which allows you to connect it to the port on either side. This is achieved thanks to the symmetrical arrangement of its terminals.

The earth terminals are located along the edges. The positive power contacts are also located symmetrically. In the center there are contacts responsible for compatibility with the USB2 interface and younger. They are the luckiest of all - they are duplicated and therefore turning 180 degrees when connecting is not terrible. Pins responsible for high-speed data exchange are marked in blue. As we see here everything is more cunning. If we rotate the connector, then, for example, the output of TX1 will change places with TX2, but at the same time the place of the input of RX1 will be taken by RX2.

The Secondary Bus and USB Power Delivery Communication pins are service pins and are intended for communication between two connected devices. After all, they need to tell each other a lot about each other before starting the exchange, but more on that later.

In the meantime, about one more feature. The USB Type-C port was originally designed as a universal solution. In addition to direct data transfer via USB, it can also be used in Alternate Mode to implement third-party interfaces. The VESA Association took advantage of this flexibility of USB Type-C by introducing the ability to transmit video streams via DisplayPort Alt Mode.

USB Type-C has four high-speed lines (pairs) of Super Speed ​​USB. If two of them are dedicated to DisplayPort needs, this is enough to get an image with a resolution of 3840x2160. At the same time, the data transfer speed via USB does not suffer. At its peak it is still the same 10 Gb/s (for USB 3.1 Gen2). Also, the transmission of the video stream does not in any way affect the energy capacity of the port. Even 4 high-speed lines can be allocated for DisplayPort needs. In this case, resolutions up to 5120×2880 will be available. In this mode, USB 2.0 lines remain unused, so USB Type-C will still be able to transfer data in parallel, although at a limited speed.

In alternative mode, the SBU1/SBU2 pins are used to transmit the audio stream, which are converted into AUX+/AUX- channels. For the USB protocol they are not used, so there are no additional functional losses here either.

When using the DisplayPort interface, the USB Type-C connector can still be connected to either side. The necessary signal coordination is provided initially.

Connecting devices using HDMI, DVI and even D-Sub (VGA) is also possible, but this will require separate adapters, but these must be active adapters, since DisplayPort Alt Mode does not support Dual-Mode Display Port (DP++) .

Alternative USB Type-C mode can be used not only for the DisplayPort protocol. Perhaps we will soon learn that this port has learned, for example, to transmit data using PCI Express or Ethernet.

And she gave to this, and she gave to that. In general... about nutrition.

Another important feature that USB Type-C brings is the ability to transmit energy through it with a power of up to 100 W. This is enough not only to power/charge mobile devices, but also to operate laptops, monitors, and if you get creative, even a small laboratory power source.

When the USB bus appeared, power transmission was an important, but still secondary function. The USB 1.0 port provided only 0.75 W (0.15 A, 5 V). Enough for a mouse and keyboard to work, but nothing more. For USB 2.0, the rated current was increased to 0.5 A, which made it possible to receive 2.5 Watts from it to power, for example, external 2.5” hard drives. For USB 3.0, a nominal current of 0.9 A is provided, which, with a constant supply voltage of 5V, guarantees a power of 4.5 W. Special reinforced connectors on motherboards or laptops were capable of delivering up to 1.5 A to speed up charging of connected mobile devices, but this is “only” 7.5 W. Against the background of these figures, the possibility of transmitting 100 W looks like something fantastic.

In order to fill the USB Type-C port with such energy, it supports the USB Power Delivery 2.0 (USB PD) specification. If there is none, the USB Type-C port will normally be able to output 7.5 W (1.5 A, 5 V) or 15 W (3 A, 5 V) depending on the configuration. There is not enough space in this article to describe this specification in detail, and anyway I will not do it better than the respected stpark in his wonderful article.

However, it will not be possible to completely bypass this extremely important topic.

In order to provide 100 watts of power at five volts, a current of 20 amperes is required! Considering the size of the USB Type-C cable, this is perhaps only possible if it is made from a superconductor! I'm afraid that today this will be quite expensive for users, so the developers of the standard took a different path. They increased the supply voltage to 20 Volts. “Excuse me, but it will completely burn out my favorite tablet,” you exclaim, and you will be absolutely right. In order not to fall victim to angry users, the engineers came up with a clever trick - they introduced a system of power profiles. Before connecting, any device is in standard mode. The voltage in it is limited to five volts and the current to two amperes. For connecting with old-type devices, this mode will end everything, but for more advanced cases, after exchanging data, the devices switch to another agreed mode of operation with advanced capabilities. To get acquainted with the main existing modes, let's look at the table.

Profile 1 guarantees the ability to transmit 10 W of energy, the second - 18 W, the third - 36 W, the fourth - 60 W, and the fifth - our cherished hundred! A port corresponding to a higher-level profile maintains all states of the previous ones downstream. 5V, 12V and 20V were selected as reference voltages. The use of 5V is necessary for compatibility with the huge fleet of available USB peripherals. 12V is the standard supply voltage for various system components. 20V was proposed taking into account the fact that external 19–20V power supplies are used to charge the batteries of most laptops.

A few words about cables!

Supporting the format described in the article in full will require a huge amount of work not only from programmers, but also from electronics manufacturers. A very large number of components will need to be developed and produced. The most obvious thing is the connectors. In order to withstand high supply voltage currents, not interfere with the transmission of very high frequency signals, and at the same time not fail after the second connection and not fall out at the most inopportune moment, the quality of their manufacture must be radically higher compared to the USB format 2.

To combine high-power energy transmission and signal with gigabit traffic, cable manufacturers will have to work hard.

Admire what a cross-section of a cable suitable for our task looks like.

By the way, about restrictions on cable lengths when using the USB 3.1 interface. To transfer data without significant losses at speeds up to 10 Gb/s (Gen 2), the length of the cable with USB Type-C connectors should not exceed 1 meter, for connections at speeds up to 5 Gb/s (Gen 1) – 2 meters.

Circuit designers from manufacturers of motherboards, docking stations and laptops will long puzzle over how to generate power of the order of hundreds of watts, and tracers will wonder how to connect it to the USB Type-C connector.

Chip manufacturers are at a low start.

Symmetrical connection and operation of signal lines in different modes will require the use of high-speed signal switch microcircuits. Today the first swallows have already appeared. Here, for example, is a switch from Texas Instruments, which supports operation in devices in both host and slave modes. It is capable of switching differential pair lines with signal frequencies up to 5 GHz.

At the same time, the dimensions of the HDC3SS460 chip are 3.5 by 5.5 mm and in idle mode it consumes a current of about 1 microampere. In active mode - less than a milliamp. There are also more advanced solutions, for example, chips produced by NXP support communication frequencies of up to 10 GHz.

Power managers combined with circuits for protecting signal lines from static began to appear, for example, this product from NXP

It is designed to correctly handle the moment of connecting the connector, as well as opening the power circuit in case of problems. This chip already supports voltage on VBUS up to 30 volts, but with the maximum switching current everything is much worse - it should not exceed 1 ampere, which is understandable, given the dimensions - 1.4 by 1.7 mm!

The undisputed leader in this area is Cypress, which has released a specialized microcontroller with an ARM Cortex M0 core that supports all five power profiles possible for the standard.

A typical connection diagram for use in a laptop gives some idea about it, and you can learn more about it by downloading the datasheet.

Unlike the NXP chip, it is focused on controlling external power switches and therefore can provide switching of the required currents and voltages, despite its small size.

Attention, an important feature for those who are in a hurry to order the first samples - the microcontroller does not have a USB interface and is not a complete and complete solution. It can only serve as a power manager. Pre-orders for samples and demo boards are currently open. The fate of this microcontroller will apparently largely depend on whether the manufacturer provides developers with reference libraries for its use in different modes.

The fact that several demokits have already been created for it greatly increases the likelihood of the latter.

Elevator to heaven or the Tower of Babel.

So today a revolutionary situation has completely emerged. The upper classes cannot, and the lower classes do not want to live in the old way. Everyone is tired of the confusion with a huge number of cables, chargers, power supplies and their low reliability.

The new standard has generated unprecedented activity. The flagships of the electronics industry - Apple, Nokia, Asus are preparing to release their first gadgets with support for USB Type-C. The Chinese are already churning out cables and adapters. Dock stations and hubs supporting high power loads are on the way. Chip manufacturers are developing new chips and are thinking about how to stuff a new port driver into a microcontroller. Marketers are deciding where to plug in a new connector, and engineers are scratching their heads trying to implement multi-functional devices from existing electronic components.

Only one thing is not clear yet. What will we get as a result? A convenient and reliable connector that will replace the lion’s share of interfaces and will find everyday use, or Babylonian pandemonium, because the situation may begin to develop according to a not-so-favorable scenario:

Users can become completely confused by numerous specifications and cables that will look exactly the same, but will only be certified for certain profiles. Try to figure out all these markings right away.

But even if it works, this is unlikely to solve the problem - the Chinese, without a twinge of conscience, will easily put any icon on any cord. And if necessary, then there are tons of different cables on each side of the same cable; they won’t be confused even if they are mutually exclusive.

The market will be flooded with an incredible number of adapters of different calibers and dubious quality.

When trying to connect one device to another, you will never know what result this process will lead to and why the connection is either completely absent or everything is terribly glitchy. Either one of the gadgets does not support the required profile, or it does, but not very correctly, or instead of a high-quality cable, it was a crude Chinese fake. What would you do if suddenly the only connector left on your laptop fails?

Until next time.

P.S. The new standard is already leading to the emergence of very exotic devices. Thus, a 100-meter-long cable was announced, which does not seem to fit into the standards. The whole point is that he is active. At both ends the cable has a USB3 interface to optical signal converter. The signal is transmitted via optics and converted back at the output. Naturally, it does not transmit energy, but only data. In this case, each of the converters at its ends is powered by the connector to which it is connected.
I think that soon self-respecting companies will begin to insert active tags into cables to confirm authenticity. The hub problem will generate unprecedented activity among developers and manufacturers of DC-DC converters. As a respected user rightly noted

Is the time really coming for one unified connector for charging any device? More recently, such an assumption could have been laughed at. But even Apple is slowly giving in, and the MacBook with its USB Type-C is the first confirmation of this.

Nirvana is still far away; first we need to finish the periphery. First things first: before talking about the problems of the new port, you need to remember what kind of “beast” it is.

One ring, one connector to rule them all

The idea of ​​the USB Type-C connector is to replace everything else, be it charging, an HDMI port or a regular slot for a flash drive. No more “my cord is on the other side” or “I can only connect one monitor.” I found the port, inserted the device, everything worked. Idyll.

Oh well. In practice, this “freedom” has created great confusion. It’s not enough to make a universal connector - it requires at least universal cable.

The fact is that the USB Type-C port has 24 contacts through which signals of different protocols pass. That's what you can connect to this universal connector.

  • USB 2.0

The first devices equipped with a USB Type-C port actually operated in USB 2.0 mode and transferred data at a speed of 480 Mbit/s. Tablets and smartphones using this protocol are still found (hello, Nokia N1).

  • USB 3.1 gen 1 (3.0, SuperSpeed ​​USB)

Flies at speeds up to 5 Gbps, backwards compatible with USB 1.x and USB 2.0. Most likely, the blue port on your computer works with this protocol. MacBook is no exception.

  • USB 3.1 gen 2

The upgraded version of USB 3.0 is also backwards compatible. Data transfer speed has increased to 10 Gbit/s, and power to 100 W. Almost like Thunderbolt!

  • Alternate Mode (AM)

The Type-C connector can accommodate other non-USB protocols. For example, Thunderbolt, HDMI, MHL or DisplayPort. But not all peripheral devices understand this Alternate Mode.

  • Power Delivery (PD)

The best part is charging via USB Type-C. Power Delivery supports 5 standard power supply profiles - up to 5V/2A, up to 12V/1.5A, up to 12V/3A, up to 12-20/3A and up to 12-20V/4.75-5A. Compliance with any profile is determined automatically.

  • Audio Accessory Mode

Yes, analog audio can also be sent through USB Type-C ports.

The hardest part is finding the right wire

Ok, everything is clear with the port, all that remains is to buy a cable. But beginners usually face three problems:

1. Old protocol in a new connector
“New” USB Type-C cable for 150 rubles from Aliexpress? Be careful, there might be an ancient USB 2.0 hidden inside. It’s not even a matter of the reputation of Chinese entrepreneurs; many well-known brands are ready to sell a Type-C cable with the old protocol inside at a bargain price.

2. A bunch of specifications
Yes, everything is written in the title. But how can an ordinary person who doesn’t care about all these new specifications figure it out? Which one selects the wire according to the shape of the connector? No way. He just realized the difference between USB 2.0 and 3.0 wires.

And outputting images via USB Type-C is not the easiest undertaking. In addition to Display Port and HDMI, there are three more generations of Thunderbolt, which can also be used to connect monitors. It’s not enough to find a suitable cable - the device must clearly understand that it is connected to it via Alternate Mode.

3. Will it charge?
It will if the name contains “charge” or “PD”. But there is a catch here: a cable that supports charging via USB Type-C must meet the required profile and be certified. What is the risk? At best, slow charging, at worst, fire of the device.

Why you can’t insert the first cable you come across

Because you can ruin everything. Here are three reasons:

1. Low data transfer speed
Of course, for connecting to an external hard drive or smartphone, almost any wire with the necessary connectors will do. But you should make sure that it works with the required protocol (for example, USB 3.0), otherwise the data transfer speed will drop.

2. Bad picture or lack thereof
If the cable will connect the MacBook and the monitor, make sure that the wire transmits the signal of the desired frequency. Don't forget that Thunderbolt 3 does not work with previous generations.

3. 100 W current is no joke
PD cables are a little more complicated. The power threshold has been raised, which means you need to be more careful, because if the cable is defective, dire consequences are possible. Not long ago, a man’s laptop and a couple of other devices burned down. Of course, this is an isolated case, and it is unlikely that your MacBook will burn out. But over time, the battery or power controller may suffer.
So, if you need a wire to charge your laptop, forget about the nonames for two hundred square meters.

But for smartphones with USB 2.0 adapters, it’s not so bad. You can buy any USB Type-C to USB 2.0 cable and quietly charge your phone.

What to do?

Of course, USB Type-C is the future. There are more and more devices with new connectors and soon the time will pass when you took the first wire you came across without thinking.

USB Type-C cables need to be labeled. Seriously, how else can you tell the difference between a cheap external hard drive and an expensive one that can charge any device?

The best option is to use original wires. Well, if you really buy, then only cool USB 3.1 with Power Delivery support. These cost from 1500 rubles and above. With connectors from Alternate Mode the situation is simpler, but the price tag is about the same.


Close