Транзисторный - 600 вт - УМ на КВ

Вступление.

Статья написана в течение дня, надо честно признаться, в противовес статье Сергея - EX8A. Который прямо всех призывает вернуться взад («взад» – это направление движения, а «в зад» - это место прибытия).

Однако, кроме моего собственного желания, были также и призывы читающей публики: а самому слабо что-нибудь выложить конкретное… Отвечаю – не слабо. Читайте. Но предупреждаю, что растекаться мыслью не собираюсь, учить прописным истинам – не буду – все в учебниках и справочниках, лирических отступлений будет минимум.

1.Обзор ситуации.

Уверен, что мысль о невозможности создания УМ на КВ мощностью более 1000 вт на транзисторах придумана приверженцами ламп. Наверное, потому что им самим трудно бежать за временем и менять собственные стереотипы мышления. И когда им говорят, что промышленные УМ на КВ в 1 кВт существуют – они отвечают: так это же промышленные.

Что касается УМ на современных лампах, то в качестве аргументов против – на первых местах недолговечность и шум вентилятора. А взамен современным предлагается ГУ-81 (это и есть «взад»).

2. Долговечность.

Не понимаю, почему утверждается, что долговечность современных ламп хуже. В справочниках указано все с точностью до наоборот. Кто-то специально в справочники «липовую» информацию закладывает? Или же у авторов этой «идеи» просто нет другого пути, кроме как перевернуть все с ног на голову, поставив под сомнение данные справочников? А ответ прост – нет другого способа обосновать необходимость появления на свет конструкции на СТАРЫХ лампах, которые мало того, что сняты давно с производства, в связи с «профнепригодностью», но у которых давным-давно закончились все мыслимые сроки хранения.

Современные, видите ли надо тренировать, а как быть с этими лохматых годов ГУ-81? Ну конечно же нельзя сказать, что их тренировать не надо, поэтому так стыдливо говорится, что мол хуже не будет, если их все-таки тоже тренировать, и дальше подробно описывают технологию всей процедуры.

3. Вентиляторы.

Тут совсем все просто: любителям ГУ-81 не интересно даже знать какие там существуют современные вентиляторы. А если подумать, то в блоке питания трансивера 1-2 вентилятора (в моем GSV-4000 – два вентилятора), в самом трансивере 1-2 вентилятора (в моем IC-781 – их 4 штуки), в компьютере 1-2 вентилятора. Итого 3-6 вентиляторов работают непрерывно. И – ничего, не мешают, никто о них и не вспоминает. Почему? Потому, что есть вентиляторы, которые имеют уровень собственного шума на уровне 22-26 db. Это в 10 !!! раз тише негромкого разговора. Почувствуйте разницу! И объемы воздуха они уже «умеют» прокачивать достойные. А какие классные «улитки» сейчас есть! А их еще можно и параллелить (по воздушному потоку)… Но если об этом не знать, то можно конечно ругать ВН-2 и им подобные. Я вот слушал шум вентиляторов ACOM-2000A, скажу я Вам: ничего не жужжит, ничего не мешает, не отвлекает, да и отдает он 2 кВт, да и автоматический тюнер имеется, и восемь микропроцессоров обслуживают весь процесс контроля и управления. А размеры…! И всего-то 2 штуки ГУ-74Б. Будем сравнивать дальше с ГУ-81?

4. Блоки питания.

Что будет, если «коротнуть» плюс источника питания с минусом? Правильно - будет искра. Чем больше мощность источника питания – тем больше искра. Параметр искры – её энергия (грубо – это мгновенная мощность, которую может отдать источник питания). А теперь посмотрим на источник питания анодов УМ на двух ГУ-81. Это источник напряжения в 3000 вольт и током 1-1,5 ампера. А теперь посмотрите на источник питания транзисторного усилителя мощностью в 1000 вт. Это источник напряжения в 48 вольт с током порядка 50 ампер. Чтобы там не говорили, но энергия искры от этих источников будет примерно одинакова. Разница, правда, есть – попробуйте прикоснуться (конечно же случайно) к плюсу источника транзисторного УМ – да ничего с Вами не случится, и попробуйте, также случайно приложить пальчик к аноду. Во втором случае имейте заранее написанное завещание.

Вес источника питания для 2-х ГУ-81 - даже страшно подумать, наверно килограммов 30-40. А габариты? Интересно посмотреть бы фото.

БП для транзисторного усилителя имеет такую характеристику как удельный объем. Это 2 литра объема пространства на 1 квт, а вес всего-то 600-700 граммов на 1 квт.

5. Стоимость.

Уместный вопрос. Поинтересуйтесь в Интернете сколько стоит усилитель на ГУ-84 у известных самодельных «производителей» - ответ прост - не менее 2000 USD, а на ГУ-78Б это уже просто 100000 рублей. И то – не ранее как через 2-3 месяца Вы его сможете получить. Правда надо честно сказать, что сделано все хорошо, добротно, надолго. Уже есть опыт долговременной эксплуатации таких усилителей – 5-7 лет без поломок и замены ламп (лампы – к неудовольствию любителей ГУ-81 – металлокерамика, современные лампы). Кто сказал, что усилитель на транзисторах той же мощности должен стоить дешевле? А при самостоятельном изготовлении, он действительно и реально стоит дешевле. Недавний пример: один радиолюбитель из Питера купил ГУ-91Б с панелькой и вентилятором за 450 USD, для усилителя, который сделали на Украине за 2000 USD. Цена на б/у АСОМ-2000А начинается от 3500 USD. А вы поинтересуйтесь у любителя УМ на ГУ-81, за сколько он бы его продал? В лучшем случае он скажет, что не продается.

Цена подобранной пары транзисторов для 600 ваттного УМ находится в пределах 250-300 USD. Это раз. БП – импульсный. Я использую 2 компьютерных БП по750 ватт каждый. Пара стоит 150 USD. Это два.

Конечно же нет 10 шт реле П1Д или В1В, а то и В2В. Нет переключателя диапазонов. Нет дурацкой настройки П-контура, а это один-два конденсатора и вариометр. И так далее, со всеми «остановками». Это – три.

Остальная стоимость всего УМ слегка подрастает за счет цены корпуса, фильтра, реле обхода и прочей мелочевки.

Если с помощью сумматора сложить мощности двух выходных каскадов по 600 вт, чтобы получить 1200 вт на выходе, то, следовательно, и все затраты надо увеличить почти вдвое. Где можно купить за 900-1000 USD УМ на 1200 вт? И с такими габаритами, и с таким весом? Ответ – нигде.

6. Схема.

Да ничего особенного, никаких «фокусов» - самая обычная двухтактная схема.

На одной плате УМ.

Или вот такой:

Посмотрите детальнее:


на второй – реле обхода, на третьей – выходные диапазонные фильтры, на четвертой источник смещения базовых цепей. Напряжение питания – 48в. Ток покоя выходного каскада – 150-250 ма. Транзисторы TH-430pp. Ферриты – TDK. Обмотки выходного трансформатора – многожильный серебряный провод 2,5-4 мм2 (не более 1 метра).

Трансформаторы сумматора – отдельная тема. Поскольку схему можно найти в любой литературе – её не привожу. Показываю детальные фотографии – все должно быть понятно.

Здесь всё в сборе на радиаторе:

7. Элементная база.

Опять-таки ничего особенного - мощные транзисторы, трансформаторы.

7. Перспективы.

Вот на этом ОДНОМ таком «красавце» можно получить 400-600 вт на КВ.

Двухтактная схема легко отдаст более1000 вт. Два модуля - дадут более 2000 вт. Вес одного 600-ваттного модуля – 2 кг (с радиатором и вентиляторами). Вес одного БП – 0,65 кг. Корпус – вес 1,5 кг. Площадь поверхности радиатора около 2000 см2, сбоку ребра продуваются двумя компьютерными кулерами. Итого все весит менее 5 кг.

А еще хочется этот автоматический и недорогой 200 вт тюнер заставить работать с мощностью порядка 1000 вт, заменив элементы согласующего устройства на более мощные.

Микрофон HEIL SOUND HM-10-5 с двумя «таблетками» (разные частотные диапазоны) здесь для понимания размеров.

Это промышленный 500 вт усилитель на двух MRF-150, которые я вынул;).

А это его обратная сторона.

Не получилось быстро найти промышленный усилитель на 1 квт такого же плана, только у него ребра радиатора в три раза выше, а на плате два параллельных канала усиления с сумматором между ними на выходе.

ВОПРОСЫ???

Часть2. Транзисторный - 600 вт - УМ на КВ

Спасибо всем, кто откликнулся на статью. Даже тем, кто посчитал, что я проходимец, а эта статья – это не более чем «развод» и обман.

Вентиляторы. Замечательная статья Н.Филенко. UA9XBI здесь же на - , не вижу никакого смысла цитировать и повторять. Могу только привести некоторые цифры для ориентации: Среднестатистический винчестер издает шум (средний между состоянием ожидания и состоянием поиска) на уровне 30-35 дб (децибел). Для сравнения: шепот - 10-20 дб, спокойный человеческий голос - 50-60 дб, едущий поезд - 90 дб, взлетающий самолет - 120 дб, болевой порог - более 130 дб. Что же касается боевого применения: шум офиса (принтеры, факсы, ксероксы, etc.) - 50 дб, шум в жилом помещении - 30-40 дб, шум компьютерного вентилятора - 20-34 дб. Хотите купить нормальный вентилятор, пожалуйста: http://www.zifrovoi.ru/catalog/coolers/all/

Фотографии. Похоже, что в именно в этом некоторые стараются найти подвох. Я заказывал и покупал первую плату в Японии, и эти же картинки выложил лишь только потому, что они были сделаны более красиво на синем фоне (я так считаю). В этом никакого секрета нет. Но если, кому-то кажется, что это не так – пожалуйста эта же плата (опять с моим микрофоном).

Мощность. Теперь буду все снимать на моем диване J). Вот еще один УМ

На бумажке, которая проволочкой прикреплена к плате, написана выходная мощность по диапазонам. Разрешение всех фотографий достаточное, чтобы можно было очень подробно все рассмотреть. Что мы там видим: в диапазонах 7, 10, 14, 18 Мгц он отдает 500 вт. Видите там написано - при напряжении питания 28 в и входной мощности 10 вт на всех диапазонах.

На 3,5 и 21 Мгц, соответственно – 320 вт и 400 вт. На 1,9 Мгц – 200 вт, 24 Мгц – 240 вт, и на 28 Мгц 160 вт. Таким образом, по уровню -3дб (а это половина мощности), частотный диапазон усилителя составляет 1,9 – 24 Мгц. Изменение мощности в два раза изменяет уровень сигнала S-метра всего лишь на 0,5 балла. На частоте 28 Мгц уровень принимаемого сигнала упадет на 0,7 балла. Кстати, нужно заметить, что угол раскрыва антенн, определяется точно так же – по уровню половинной мощности, т.е. по уровню -3дб.

Для того, чтобы поднять выходную мощность на 1,9, 24 и 28 Мгц, надо просто увеличить входную мощность в 2-3 раза (20-30вт). Или сделать систему ALC – автоматическую регулировку уровня мощности. Я этого не делал, т.к. мне проще повернуть ручку RFPWR.

Такую мощность отдает плата, которую Вы видите на фото. У меня не вызывает никаких сомнений, что при питании от источника 48 в, и конструктивной оптимизации трансформаторов эта плата может отдать мощность «чуть больше». А если сложить пару таких модулей – вот Вам и 1000 вт. Теперь подумайте, а стоит ли стремиться к 2000 вт, если, в итоге, Вы получите прибавку уровня сигнала на приемном конце всего лишь в 0,5 балла? Пример работы моего соседа, не буду называть его позывной. На 20-ке я его принимаю на 9+50дб (S-метр калиброван), а вторую гармонику на 28 Мгц слышу на 9+5дб. У человека хорошая антенна (biggun5 эл), а вот усилитель… сделан безукоризненно, аккуратно, красиво, всем говорит, что у меня честных «кило двести». А там две лампы ГМИ-11 в параллель и анодное напряжение под 2500 вольт. Это как? Нормально? Никакие увещевания не помогают. И хоть сам неплохой инженер и понимает, что уменьшение уровня в 0,5 балла – это ерунда, НИЧЕГО не делает.

У меня есть усилитель на ГУ-73П, с охлаждением каким-то хладоагентом. И блок питания к нему, который мне уже лень было фотографировать. Я его так ни разу и не включил (отдает он 2500 вт), БП весит около 50 кг. Хотели его как-то украсть из-за алюминиевой обшивки, но не смогли поднять hi-hi.

Блоки питания. Сначала фото импульсного БП известной американской фирмы

Этот ИБП дает 20 вольт и 125 ампер, итого 2500 вт. Вес – примерно 12-15 кг. При исследовании на столе у RZ3CC, оказалось, что абсолютно не подходит для наших применений. В моменты переключений ключевых транзисторов такие импульсы скачут, что становится даже неинтересно искать варианты защиты от них приемника. Правда, надо сказать, что это разработка примерно 15-летней давности, и тогда конечно еще не знали о резонансных ИБП. Суть в том, что не подходит для больших мощностей принцип работы преобразователей, которые используются в БП для современных трансиверов.

Теперь посмотрим на те ИБП, которыми я пользуюсь.

Это понятно - компьютерный ИБП. Для тех кто что-то говорил о больших токах – увеличьте картинку и увидите надпись 5в/50а – никаких болтов и гаек. Это я к тому, что ничто Вам не мешает делать подключение например даже ленточным кабелем.

Здесь два ИБП, верхниё 5в/20а, нижний 5в/90а. Движение вперед заметно – ИБП стали заметно меньше и легче. В ИБП IC-781 500вт блок питания имеет очень небольшие габариты и вес порядка 1,5-2 кг, но ему уже более 15 лет. Согласитесь, что технологии шагнули далеко вперед.

В 750 вт ИБП для компьютера есть уже две обмотки по 12в/22а. Берете два таких ИБП и получаете 48в/22а подводимой мощности. Только не забудьте развязать источники диодами. Если же немного поколдовать с другими напряжениями этих ИБП, то можно получить подводимую мощность 1600вт.

Мой же выходной каскад работал с традиционным ИП – трансформаторным, на фотографии ниже Вы видите шину, которой намотан ОСМ -1 1,0 , кстати, его цена в Интернете 2930 рублей.

Намотка такой шиной не сильно поднимает энтузиазм, да и вес трансформатора получается совсем немаленький.

Я уже говорил о том, что к лампам отношусь НОРМАЛЬНО, они еще долгое время будут вне конкуренции в промышленности. Но все же хочется, что-то более компактное и легкое. Оказалось – это делают, правда не для широкой аудитории. В одном НИИ мне предложили импульсный БП для лампового УМ. Сказали так: 3000в, 1,5а, в корпусе, с защитами, с надежностью по самому высокому классу, в объеме 3 литров, весом 2-3 кг, все элементы импортные (ферриты только Epcos), за 30000 рублей, за 1 месяц. Я спросил, а можно посмотреть схему, ответ – 15000 рублей, и схема с подробным описанием – твоя. Схему покупать я не стал. Но понял, что есть варианты очень любопытные для радиолюбителей.

Это киловаттный модуль на двух ГИ-46Б. Вентиляторы и радиаторы от процессора. Площадь радиатора у каждой лампы по 850 см2, это почти в два раза больше, чем у «родного» радиатора. Эта идея пока остановлена в своем воплощении, ввиду появления альтернативной – на транзисторах.

Схема. Приведу обе схемы, которые я получил.

Как я и говорил – ничего необычного – самые стандартные схемы. Ток покоя каждого транзистора 150-250 ма. Что касается ферритов – сильно не советовал бы использовать наши ферриты вообще. Причина одна – нестабильность параметров. У Рэда несколько вариантов ферритов – выбирайте любой, подходящий по мощности и частоте. Выходные трансформаторы: у меня имеют несколько вариантов – голубые ферриты это AmidonFT-23-43, диаметр 23мм, материал 43, по 6 штук в каждом столбике. 4 витка провода сечением 1,5 мм кв. Во втором усилителе кольца TDKK6a.77.08 внешний диаметр 28мм, внутренний диаметр 16мм, высота кольца 8мм. По два кольца в каждом столбике. Четыре витка многожильного серебряного провода, сечением 2-2,5 мм кв. Входные трансформаторы – кольца вн. Диам. 14-16 мм, внутр. – 8мм, длина столбиков – 14-18 мм, материал М600НН. По четыре витка провода сечением 0,35 мм кв. Размеры ферритовых колец в трансформаторах, зависят исключительно от мощности потерь. Именно по этой причине при точном согласовании, размеры колец могут быть очень небольшими. В качестве примера на следующем фото – блок полосовых диапазонных фильтров от 500 вт, ICOMа, который мне подарил RZ3CC (Г. Шульгин).

Не забудьте устанавливать высоковольтные керамические конденсаторы, там где они указаны на схеме.

Здесь показаны измерения зависимости выходной мощности от входной. Не мои измерения. Первая картинка – американская, вторая – японская. Но совершенно очевиден порядок мощностей, я бы сказал заметно лучше, чем на ГУ-74Б, и всего-то два 2SC2879. Ну и последняя табличка от японцев, посмотрите – очень характерная. Это работает пара транзисторов MRF448pp, по datasheet у них мощность 250 вт, а отдают больше чем 250х2.

Pвх (вт) Pвых (вт) Vип (V) Iип (A) Pип (вт) КПД (%)

1 82 48.3 7 338 24.3 2 177 48.3 12 580 30.5 5 380 47.8 19 908 41.8 10 530 46.5 24 1116 47.5 14 630 46.0 25 1196 52.7

Согласование. Особое внимание хочу обратить на согласование с антенной транзисторного УМ. Конечно лучше всего использовать автоматический антенный тюнер (кстати, кто-то в форуме решил, что я хочу запихнуть в тот же самый объем в три раза большие переменные емкости и индуктивности. Это ну очень смелое предположение hi-hi), но также необходимо иметь нормальные антенны, или, по крайней мере, ручное согласующее устройство. Мне не понятны высказывания о том, что вот мол лампа будет «держать» большой КСВ, в отличие от транзистора. И при этом совершенно не интересует, тот факт что при этом погаснут в округе все телевизоры и заговорят не только телефоны, но и утюги. Зато «мы работаем» на Альфе, или еще на чем-нибудь, никак не менее одного киловатта. Защита транзисторного УМ достаточно проста, об этом писал в форуме по-моему RK3AQW. Я делаю также, но ограничиваю критический КСВ не 10 а 6. То есть выход усилителя нагружен на безындукционный резистор сопротивлением 300 ом. Это плата за надежность усилителя в целом. Этот резистор состоит из 2-х, один 270 ом, а второй построечный угольный 47 ом. С движка этого резистора через пару диодов с конденсатором, напряжение подается на базу транзисторного ключа на 2N2222, в коллекторе которого стоит РЭС-49, которое своими контактами снимает напряжение смещения с выходного каскада. Поскольку КСВ=6 транзисторы могут «терпеть» достаточно долго, за это время совершенно спокойно снимается смещение. Ну а дальше – ремонт или настройка антенны.

УМ в 1 квт

.

А это вид сзади.

Со стороны деталей видно, что есть два канала, подключается два ИП, есть сумматор. Обратите внимание, справа виден кусочек обрезанного коаксиального кабеля - выход. Отмечаю отдельно – его диаметр 2,5 мм. Думаю, что для мощностей в 1000 вт и более, наши люди применяют кабели внешним диаметром 11-15 мм. Здесь же 2,5 мм наверное вызовет бурю гнева. А ведь есть кабель RG-142, диаметр которого с внешней оболочкой 4,95 мм, который способен передать мощность 3,5 квт на частоте 50 Мгц. И еще обратите внимание на размеры ферритов – никаких намеков на гигантские размеры. И т.д.

Это достаточно «пожилой» микрофонный процессор, в нем компрессор, реверберация, какая-то встроенная мелодия, монитор с приемника, индикатор уровня. Следующее фото - современный прибор, того же назначения.

Это недорогой УКВ 150вт стандартный УМ, в котором легко поместится 600вт УМ КВ, правда теплоотвод слабоват, но его можно обдуть кулером или заменить. А тот усилитель, который внутри, можно легко переделать на КВ ватт этак на 250.

Микрофонный графический эквалайзер. Хорош тем, что в полосе 3 кгц имеет 5 полос активных регулировок.

Это, к примеру, микрофонный коммутатор, может коммутировать два разных микрофона на два разных трансивера в любом порядке (КВ и УКВ, например).

Это трехкиловаттный коаксиальный антенный коммутатор на 6 антенн.

Это фильтр TVI.

А время вот этого чуда, по крайней мере для радиолюбителей, должно бы закончиться.

73! RU3BT. Сергей

Линейный транзисторный КВ усилитель мощностью 50 Вт на полевых транзисторах IRF520, отличается от большинства известных рядом хотя и не новых, но довольно редко применяемых технических решений. Его хорошие параметры и высокое качество сигнала подтверждены большим числом положительных отзывов, полученных от корреспондентов в проведенных QSO

Внешний вид усилителя показан на рис.

Его схема - на рис.

Усиливаемый сигнал, поданный на разъем XW1, поступает через аттенюатор из резисторов R1- R3 и трансформатор Т1 на затворы полевых транзисторов VT1 и VT2. Использованная схема обеспечивает хорошую симметрию сигналов на затворах. С помощью подстроечного резистора R7 на затворах транзисторов устанавливают постоянное смещение, обеспечивающее ток покоя в цепи их стоков (в отсутствие переменного напряжения на затворах) около 80… 100 мА. Суммарный ток покоя, который можно измерить, включив амперметр в помеченный на схеме крестом разрыв провода питания, вдвое больше - 160…200 мА. При максимальной выходной мощности ток здесь увеличивается приблизительно до 4 А.

Резистивный аттенюатор служит для лучшего согласования усилителя с источником сигнала и гашения избыточной мощности этого сигнала. Указанные на схеме номиналы резисторов R1-R3 оптимальны при работе от использовавшегося автором QRP трансивера “Kajman” с выходной мощностью 2 Вт. В других случаях эти резисторы придется, возможно, подобрать заново. Трансформатор Т1 намотан сложенным вдвое изолированным медным проводом диаметром 0,55 мм на кольцевом ферритовом магнитопроводе FT-82-43. Его обмотки содержат по 11 витков.

В усилителе применен оригинальный узел суммирования выходных сигналов плеч двухтактного усилителя, собранный на трансформаторе Т2, служащем также для согласования усилителя с 50-омной нагрузкой. Разделительные конденсаторы С6-С9 не пропускают в обмотки трансформатора постоянную составляющую тока стока транзисторов.

Это избавляет его магнитопровод от нежелательного подмагничивания, следствием которого могут быть повышенные нелинейные искажения выходного сигнала, недостаточная мощность, увеличенный уровень гармоник на выходе. Конструкция и число витков обмоток трансформатора Т2 такие же, как и Т1. Но его магнитопровод склеен из двух ферритовых колец FT-114-43, а диаметр обмоточного провода - 1 мм.

От постоянной составляющей тока, текущего в обмотках дросселей L1, L2, L4, L5, избавиться невозможно. Опасность насыщения здесь устранена другим способом - применением разомкнутых стержневых, а не замкнутых кольцевых магнитопроводов. Дроссели L1 и L2 имеют по 25 витков провода диаметром 1 мм, намотанных на ферритовом стержне диаметром 8 мм, а дроссели L4 и L5 - 20 витков такого же провода на стержне диаметром 5 мм. Автор, к сожалению, не сообщает магнитную проницаемость ферритовых стержней, говоря лишь, что она должна быть высокой.

Катушка L3 намотана на кольцевом магнитопроводе Т68-2 из карбонильного железа. Она содержит 19 витков провода диаметром 0,9 мм.

Печатная плата усилителя изображена на рис.

Фольга на ее обратной стороне сохранена полностью. Несколькими пропущенными в специально просверленные отверстия проволочными перемычками она соединяется с общим печатным проводником на лицевой стороне. Для корпусов полевых транзисторов в плате сделаны окна, а сами транзисторы укреплены на теплоотводах. Транзисторы необходимо подобрать с разбросом параметров не более 10 %. Если этого сделать не удается, показанные на рисунке печатной платы проволочные перемычки в цепях истока транзисторов необходимо заменить резисторами сопротивлением 0,22 Ом и мощностью 2 Вт. При подаче на вход усилителя синусоидального сигнала 9 вольт на его нагрузке 50 ом была получена мощность 55 вт.

По материалам журнала радио

Представляю Вашему вниманию усилитель мощности для КВ трансивера на полевых транзисторах IRF510.

При входной мощности порядка 1 ватта, на выходе легко получается 100-150 ватт.

сразу прошу извинения за качество схемы.

Усилитель двухкаскадный. Оба каскада выполнены на популярных и дешёвых ключевых мосфетах,что выгодно отличает данную конструкцию от многих других.Первый каскад - однотактный. Согласование по входу с источником сигнала 50 Ом достигнуто не самым лучшим, но простым способом - применением на входе резистора R4 номиналом 51 Ом. Нагрузкой каскада является первичная обмотка междукаскадного согласующего трансформатора. Каскад охвачен цепью отрицательной обратной связи для выравнивания частотной характеристики. L1, входящая в эту цепь, уменьшает ООС в области высших частот и тем самым поднимает усиление. Такую же цель преследует установка C1 параллельно резистору в истоке транзистора. Второй каскад - двухтактный. С целью минимизации гармоник применено раздельное смещение плеч каскада. Каждое плечо также охвачено цепью ООС. Нагрузка каскада - трансформатор Tr3, а согласование и переход на несимметричную нагрузку обеспечивает Tr2. Смещение каждого каскада и соответственно - ток покоя, выставляются раздельно при помощи подстроечных резисторов. Напряжение на эти резисторы подаётся через ключ PTT на транзисторе Т6. Переключение на TX происходит при замыкании точки PTT на землю. Напряжение смещения стабилизировано на уровне 5в интегральным стабилизатором. В целом очень несложная схема с хорошими эксплуатационными характеристиками.

Теперь о деталях. Все транзисторы усилителя - IRF510. Можно применить и другие, но с ними можно ожидать увеличения завала усиления в области частот выше 20Мгц, так как входная и проходная ёмкости транзисторов IRF-510 наиболее низкие из всей линейки ключевых мосфетов. Если удастся найти транзисторы MS-1307, то можно рассчитывать на значительное улучшение работы усилителя в области высших частот. Но вот дорогие они… Индуктивность дросселей Др1 и Др2 некритична - они намотаны на кольцах из феррита 1000НН проводом 0.8 в один слой до заполнения. Всё конденсаторы - smd. Конденсаторы С5,С6 и особенно - С14, С15 должны иметь достаточную реактивную мощность. При необходимости можно применить несколько конденсаторов,включённых в параллель. Для обеспечения качественной работы усилителя необходимо особое внимание уделить изготовлению трансформаторов. Тr3 намотан на кольце из феррита 600НН внешним диаметром 22мм и содержит 2 обмотки по 7 витков. Наматывается в два провода, которые слегка скручиваются. Провод - ПЭЛ-2 0.9.

Тr1 и Tr2 - выполнены по классической конструкции одновиткового ШПТ (aka "бинокль"). Tr1 выполнен на 10 кольцах (2 столба по 5) из феррита 1000НН диаметром 12мм. Обмотки выполнены толстым проводом МГТФ. Первая содержит 5 витков,вторая - 2 витка. Хорошие результаты даёт выполнение обмоток из нескольких включенных в параллель проводов меньшего сечения. Tr2 выполнен с использованием ферритовых трубочек,снятых с сигнальных шнуров мониторов. Внутрь их отверстий плотно вставлены медные трубки,которые и образуют один виток - первичную обмотку. Внутри намотана вторичная обмотка, которая содержит 4 витка и выполнена проводом МГТФ. (7 проводов в параллель). В данной схеме отсутствуют элементы защиты выходного каскада от высокого КСВ, кроме встроенных конструктивных диодов, которые эффективно защищают транзисторы от "мгновенных" перенапряжений на стоках. Защитой от КСВ занимается отдельный узел, построенный на базе КСВ-метра и снижающий питающее напряжение при росте КСВ выше определённого предела. Эта схема - тема отдельной статьи. Резисторы R1-R4,R7-R9,R17,R10,R11 - типа МЛТ-1.R6 - МЛТ-2. R13,R12 - МЛТ-0.5. Остальные - smd 0.25 вт.

Несколько слов об ошибках монтажа:
В целях улучшения читаемости схем расмотрим усилитель мощности с двумя парами оконечных полевых транзисторов и питании ±45 В.
В качестве первой ошибки попробуем "запаять" стабилитроны VD1 и VD2 не правильной полярностью (правильное включение показано на рисунке 11). Карта напряжений приобретет вид, показанный на рисунке 12.

Рисунок 11 Цоколевка стабилитронов BZX84C15 (впрочем и на диодах цоколевка такая же).


Рисунок 12 Карта напряжений усилителя мощности при неправильном монтаже стабилитронов VD1 и VD2.

Данные стабилитроны нужны для формирования напряжения питания операционного усилителя и выбраны на 15 В исключительно из за того, что это напряжение является для данного операционного усилителя оптимальным. Работоспособность без потери качества усилитель сохраняет и при использовании рядом стоящих по линейке номиналов - на 12 В, на 13 В, на 18 В (но не более 18 В ). При неправильном монтаже вместо положенного напряжения питания опреционный усилитель получает лишь напряжение падения на n-p переходе стаблитронов. Ток покая регулируется нормально, на выходе усилителя присутсвует небольшое постоянное напряжение, выходной сигнал отсутсвует.
Так же возможен не правильный монтаж диодов VD3 и VD4. В этом случае ток покоя ограничивается лишь номиналами резисторов R5, R6 и может достигать критической величины. Сигнал на выходе усилителя будет, но довольно быстрый нагрев оконечных транзисторов однозначно повлечет их перегрев и выход усилителя из строя. Карта напряжений и токов дляэтой ошибки показаны на рисунка 13 и 14.


Рисунок 13 Карта напряжений усилителя при неправильном монтаже диодов термостабилизации.


Рисунок 14 Карта токов усилителя при неправильном монтаже диодов термостабилизации.

Следующей популярной ошибкой монтажа может быть неправильный монтаж транзисторов предпоследнего каскада (драйверов). Карта напряжений усилителя в этом случае приобретает вид, показанный на рисунке 15. В этом случае транзисторы оконечного касада полностью закрыты и на выходе усилителя наблюдается отсутсвие каких либо признаков звука, а уровень постоянного напряжения максимально приближен к нулю.


Рисунок 15 Карта напряжений при неправильном монтаже транзисторов драйверного каскада.

Далее самая опасная ошибка - попутаны местами транзисторы драйверного каскада, причем цоколевка тоже попутана в следствии чего прилагаемое к выводам транзисторов VT1 и VT2 является верным и они работают в режиме эмиттерных повторителей. В этом случае ток через оконечный каскад зависит от положения движка подстроечного резистора и может быть от 10 до 15 А, что в любом случае вызовет перегрузку блока питания и быстрый разогрев оконечных транзисторов. На рисунке 16 показаны токи при среднем положении подстроечного резистора.


Рисунок 16 Карта токов при неправильном монтаже транзистров драйверного каскада, цоколевка тоже попутана.

Запаять "наоборот" вывода оконечных полевых транзисторов IRFP240 - IRFP9240 врядли получится, а вот поменять их местами получается довольно часто. В этом случае установленные в транзисторах диоды получаются в нелегкой ситуации - прилагаемое к ним напряжение имеет полярность соответсвующую их минимальному сопротивлению, что вызывает максимальное потребление от блока питания и как быстро они выгорят больше зависит от удачи чем от законов физики.
Фейверк на плате может случиться еще по одной причине - в продаже мелькают стабилитроны на 1,3 Вт в корпусе таком же как у диодов 1N4007, поэтому перед монтажом стабилитронов в плату, если они в черном корпусе стоит повнимательней ознакомиться с надписями на корпусе. При монтаже вместо стабилитронов диодов напряжение питания операционного усилителя ограничено лишь номиналами резисторов R3 и R4 и потребляемым током самого операционного усилителя. В любом случае получившаяся величина напряжения значительно больше максимального напряжения питания для данного ОУ, что влечет его выход из строя иногда с отстрелом части корпуса самого ОУ, ну а дальше возможно появление на его выходе постоянного напряжения, близкого в напряжению питания усилителя, что повлечет появление постоянного напряжения на выходе самого усилителя мощности. Как правило оконечный каскад в этом случае остается работоспособным.
Ну и на последок несколько слов о номиналах резисторов R3 и R4, которые зависят от от напряжения питания усилителя. 2,7 кОм является наиболее универсальным, однако при питании усилителя напряжением ±80 В (только на 8 Ом нагрузку) данные резисторы будут рассеивать порядка 1,5 Вт, поэтому его необходимо заменить на резистор 5,6 кОм или 6,2 кОм, что снизит выделяемую тепловую мощность до 0,7 Вт.


Э К Б BD135; BD137


З И С IRF240 - IRF9240

Данный усилитель заслуженно обрел своих поклоников и начал обретать новые версии. Прежде всего изменению подверглась цепочка формирования напряжения смещения первого транзисторного каскада. Кроме этого в схему была введена защита от прегерузки.
В результате доработок принципиальная схема усилителя мощности с полевыми транзисторами на выходе приобрела следующий вид:


УВЕЛИЧИТЬ

Варианты печатной платы приведены в графическом формате (необходимо масштабировать)

Внешний вид получившейся модификации усилителя мощности приведен на фотографиях ниже:

Осталось в эту бочку меда плескануть ложку дегтя...
Дело в том, что используемые в усилителе полевые транзисторы IRFP240 и IRFP9240 прекратила выпуск фирма разработчик International Rectifier (IR), которая прилагала больше внимания к качеству выпускаемой продукции. Основная проблема этих транзисторов - они разрабатывались для использования в источниках питания, но оказались вполне пригодными для звуковой усилительной аппаратуре. Повышенное внимание к качеству выпускамых компонентов со стороны International Rectifier позволяло не производя подбор транзисторов включать параллельно несколько транзисторов не беспокоясь об отличиях характеристик транзисторов - разброс не превышал 2%, что вполне приемлемо.
На сегодня транзисторы IRFP240 и IRFP9240 выпускаются фирмой Vishay Siliconix , которая не так трепетно относится к выпускаемой продукции и параметры транзисторов стали пригодными лишь для источников питания - разброс "коф усиления" транзисторов одной партии превышает 15%. Это исключает параллельное включение без предварительного отбора, а количество протестированных транзисторов для выбора 4 одинаковы переваливает несколько десятков экземпляров.
В связи с этим перед сборкой данного усилителя прежде всего следует выяснить какой фирмы транзисторы вы может достать. Если в Ваших магазинах в продаже Vishay Siliconix, то настоятельно рекомендуется отказаться от сборки данного усилителя мощности - Вы рискуете довольно серьезно потратиться и ни чего не добиться.
Однако и работа по разработке "ВЕРСИИ 2" этого усилителя мощности и отсутствие приличных и не дорогие полевых транзисторов для выходного каскада заставили немного поразмышлять над будущим этой схемотехники. В результате был смоделирована "ВЕРСИЯ 3", использующая вместо полевых транзисторов IRFP240 - IRFP9240 фирмы Vishay Siliconix биполярную пару от TOSHIBA - 2SA1943 - 2SC5200, которые на сегодня еще вполне приличного качества.
Принципиальная схема нового варианта усилителя вобрала доработки "ВЕРСИИ 2" и притерпела изменения в выходном каскаде, позволив отказаться от использования полевых транзисторов. Принципиальная схема приведена ниже:


Принципиальная схема с использованием полевых транзисторов в качестве повторителей УВЕЛИЧИТЬ

В данном варианте полевые транзисторы сохранились, но они используются в качестве повторителей напряжения, что существенно разгружает драйверный каскад. В систему защиты введена небольшая положительная связь, позволяющая избежать возбуждение усилителя мощности на границе срабатывания защиты.
Печатная плата в процессе разработки, орентировочно результаты реальных измерении и работоспособная печатная плата появятся в конце ноября, а пока можно предложить график измерения THD, полученный МИКРОКАП. Подробнее о данной программе можно почитать .

(статью дополнено 07.02.2016г.)

UT5UUV Андрей Мошенский.

Усилитель «Джин»

Транзисторный усилитель мощности

с бестрансформаторным питанием

от сети 220 (230)В.

Идея создания мощного, лёгкого и дешёвого усилителя большой мощности актуальна со времён зарождения радиосвязи. Множество прекрасных конструкций на лампах и транзисторах разработано за последний век.

Но до сих пор идут споры, по поводу превосходства твёрдотельной, либо электронно-вакуумной усилительной техники большой мощности…

В эпоху импульсных источников питания вопрос массогабаритных параметров источников вторичного электропитания не столь остр, но, фактически исключив таковой, применив выпрямитель напряжения промышленной сети, всё равно получается выигрыш.

Заманчивой кажется идея использования современных высоковольтных импульсных транзисторов в усилителе мощности радиостанции, применив для питания сотни вольт постоянного тока.

Вашему вниманию предлагается конструкция усилителя мощности на «нижние» КВ диапазоны мощностью не менее 200 Ватт с бестрансформаторным питанием, построенная по двухтактной схеме на высоковольтных полевых транзисторах. Основное преимущество перед аналогами – массогабаритные показатели, низкая стоимость комплектующих, стабильность в работе.

Основная идея – применения активных элементов – транзисторов с граничным напряжением сток-исток 800В (600В) предназначенных для работы в импульсных источниках вторичного электропитания. В качестве усилительных элементов выбраны полевые транзисторы IRFPE30, IRFPE40, IRFPE50 производства компании “International Rectifier”. Цена изделий 2 (два) дол. США. Чуть проигрывают им по граничной частоте, обеспечивая работу лишь в диапазоне 160м, 2SK1692 производства “Toshiba”. Любители усилителей на базе биполярных транзисторов, могут поэкспериментировать с 600-800 вольтовыми BU2508, MJE13009 и иными подобными.

Методика расчёта усилителей мощности и ШПТЛ приведена в справочнике радиолюбителя коротковолновика С.Г. Бунина Л.П. Яйленко. 1984г.

Моточные данные трансформаторов приведены ниже. Входной ШПТЛ TR1 выполнен на кольцевом сердечнике К16-К20 из феррита М1000—2000НМ(НН). Число витков 5 витков в 3 провода. Выходной ШПТЛ TR2 выполнен на кольцевом сердечнике К32-К40 из феррита М1000—2000НМ(НН). Число витков 6 витков в 5 проводов. Провод для намотки рекомендован МГТФ-035.

Возможно изготовить выходной ШПТЛ в виде бинокля, что хорошо скажется на работе в «верхней» части КВ диапазона, правда там приведенные транзисторы не функционируют из-за времени нарастания и спада тока. Такой трансформатор может быть изготовлен из 2 столбцов по 10 (!) колец К16 из материала М1000—2000. Все обмотки по схеме – один виток.

Данные замера параметров трансформаторов приведены в таблицах. Входные ШПТЛ нагружены на входные резисторы (у автора, 5,6 Ома вместо расчётных), включенные параллельно с ёмкостью затвор-исток, плюс ёмкостью за счёт эффекта Миллера. Транзисторы IRFPE50. Выходные ШПТЛ были нагружены со стороны стоков на безындукционный резистор 820 Ом. Векторный анализатор АА-200 производства RigExpert. Завышенный КСВ может быть объяснён недостаточно плотной укладкой витков трансформаторов на магнитопровод, ощутимым несоответствием волнового сопротивления линии из МГТФ-0,35 требуемому в каждом конкретном случае. Тем не менее, на диапазонах 160, 80 и 40 метров проблем не возникает.

Рис 1. Схема электрическая принципиальная усилителя.

Источник питания мостовой выпрямитель 1000В 6А, нагруженный на конденсатор 470,0 на 400В.

Не забывайте о нормах техники безопасности, качестве радиаторов и слюдяных прокладок.

Рис 2. Схема электрическая принципиальная источника постоянного тока.

Рис 3. Фотография усилителя со снятой крышкой.

Таблица 1. Параметры ШПТЛ TR1, выполненного на кольце К16.

Частота кГц R jX SWR
1850 45,5 +4,2 1,15
3750 40,5 +7,2 1,3
7150 40,2 +31,8 2,1

Таблица 2. Параметры ШПТЛ TR2, выполненного на кольце К40.

Частота кГц R jX SWR
1800 48 -0,5 1,04
3750 44 -4,5 1,18
7150 40,3 -5,6 1,28
14150 31,1 4,0 1,5
21200 х х 1,8
28300 х х 2,2

Рис 4. Выходной ШПТЛ на кольце К40.

Таблица 3. Параметры ШПТЛ TR2, конструкции «бинокль».

Частота кГц R jX SWR
1850 27,3 +26 2,5
3750 46 +17 1,47
7150 49 -4,4 1,10
14150 43 -0,9 1,21
21200 х х 1,41
28300 х х 1,7

Рис 5. Выходной ШПТЛ конструкции «бинокль».

При параллельном включении транзисторов и пересчёте ШПТЛ мощность можно значительно повысить. К примеру, на 4 шт. IRFPE50 (2 в плече), выходном ШПТЛ 1:1:1 и питании 310В на стоках, легко получаема выходная мощность 1кВт. При такой конфигурации КПД ШПТЛ особо высок, методика выполнения ШПТЛ неоднократно описана.

Авторский вариант усилителя на двух IRFPE50, приведенный на фотографиях выше по тексту, прекрасно работает на диапазонах 160 и 80 м. Мощность 200 Ватт на нагрузке 50 Ом при входной мощности около 1 Ватта. Цепи коммутации и «обвода» не приведены и зависят от Ваших пожеланий. Прошу обратить внимание на отсутствие в описании выходных фильтров, эксплуатация усилителя без которых недопустима.

Андрей Мошенский

Дополнение (07.02.2016):
Уважаемые читатели! По многочисленным просьбам, с разрешения Автора и редакции, выкладываю Также, привожу фотографию новой конструкции усилителя «Джин».


Close