Вы все привыкли к нашим компьютерам: утром читаем новости со смартфона, днем работаем с ноутбуком, а вечером смотрим фильмы на планшете. Все эти девайсы объединяет одно - кремниевый процессор, состоящий из миллиардов транзисторов. Принцип работы таких транзисторов достаточно прост - в зависимости от подведенного напряжения мы получаем на выходе другое напряжение, которое интерпретируется или как логический 0, или как логическая 1. Для того, чтобы проводить операции деления, есть битовый сдвиг - если у нас, к примеру, было число 1101, то после сдвига на 1 бит влево будет 01101, а если теперь сдвинуть его на 1 бит вправо - будет 01110. И основная проблема кроется в том, что для все того же деления может понадобиться несколько десятков таких операций. Да, с учетом того, что транзисторов миллиарды, такая операция занимает наносекунды, но вот если операций много - мы теряем на эти вычисления время.

Принцип работы квантовых компьютеров

Квантовый компьютер же предлагает совершенно другой способ вычислений. Начнем с определения:

Квантовый компьютер - вычислительное устройство , которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных.

Понятнее явно не стало. Квантовая суперпозиция говорит нам о том, что система с какой-то долей вероятности существует во всех возможных для нее состояниях (при этом сумма всех вероятностей, разумеется, равна 100% или 1). Разберем это на примере. Информация в квантовых компьютерах хранится в кубитах - если обычные биты могут иметь состояние 0 или 1, то кубит может иметь состояние 0, 1, и 0 и 1 одновременно. Поэтому если мы имеем 3 кубита, к примеру 110, то это выражение в битах равносильно 000, 001, 010, 011, 100, 101, 110, 111.

Что это нам дает? Да все! К примеру, у нас есть циферный пароль из 4 символов. Как будет его взламывать обычный процессор? Простым перебором от 0000 до 9999. 9999 в двоичной системе имеет вид 10011100001111, то есть для его записи нам нужно 14 бит. Поэтому если мы имеем квантовый ПК с 14 кубитами - мы уже знаем пароль: ведь одно из возможных состояний такой системы и есть пароль! В результате все задачи, которые сейчас сутками считают даже суперкомпьютеры, на квантовых системах будут решаться моментально: нужно найти вещество с определенными свойствами? Не проблема, сделайте систему с таким же количеством кубитов, сколько у вас требований к веществу - и ответ уже будет у вас в кармане. Нужно создать ИИ (искусственный интеллект? Проще некуда: пока обычный ПК будет перебирать все комбинации, квантовый компьютер сработает молниеносно, выбрав лучший ответ.


Казалось бы, все здорово, но есть одна важная проблема - как нам узнать результат вычислений? С обычным ПК все просто - мы можем взять и считать его, напрямую подключившись к процессору: логические 0 и 1 там совершенно определенно интерпретируются как отсутствие и наличие заряда. Но вот с кубитами такое не пройдет - ведь в каждый момент времени он находится в произвольном состоянии. И тут нам на помощь приходит квантовая запутанность. Ее суть заключается в том, что можно получить пару частиц, которые связаны друг с другом (говоря научным языком - если, к примеру, проекция спина одной запутанной частицы отрицательна, то другой обязательно будет положительной). Как это выглядит на пальцах? Допустим, у нас есть две коробки, в которых лежит по бумажке. Мы разносим коробки на любое расстояние, открываем одну из них и видим, что бумажка в ней в горизонтальную полоску. Это автоматически означает, что другая бумажка будет в вертикальную полоску. Но вот проблема в том, что как только мы узнали состояние одной бумажки (или частицы), квантовая система рушится - неопределенность исчезает, кубиты превращаются в обычный биты.

Поэтому вычисления на квантовых компьютерах по сути одноразовы: мы создаем систему, которая состоит из запутанных частиц (где находятся их вторые «половинки» мы знаем). Мы проводим вычисления, и после этого «открываем коробку с бумажкой» - узнаем состояние запутанных частиц, а значит и состояние частиц в квантовом компьютере, а значит и результат вычислений. Так что для новых вычислений нужно снова создавать кубиты - просто «закрыть коробку с бумажкой» не получится - мы ведь уже знаем, что нарисовано на бумажке.

Возникает вопрос - раз квантовый компьютер может моментально подбирать любые пароли - как защитить информацию? Неужели с приходом таких устройств исчезнет конфиденциальность? Конечно же нет. На помощь приходит так называемое квантовое шифрование: оно основано на том, что при попытке «прочесть» квантовое состояние оно разрушается, что делает любой взлом невозможным.

Домашний квантовый компьютер

Ну и последний вопрос - раз квантовые компьютеры такие классные, мощные и не взламываемые - почему мы ими не пользуемся? Проблема банальна - невозможность реализовать квантовую систему в обычных домашних условиях. Для того, чтобы кубит мог существовать в состоянии суперпозиции бесконечно долго, нужны крайне специфические условия: это полный вакуум (отсутствие других частиц), температура, максимально близкая к нулю по Кельвину (для сверхпроводимости), и полное отсутствие электромагнитного излучения (для отсутствия влияния на квантовую систему). Согласитесь, создать такие условия дома мягко говоря трудновато, а ведь малейшее отклонение приведет к тому, что состояние суперпозиции исчезнет, и результаты вычислений будут неверными. Вторая проблема - это заставить кубиты взаимодействовать друг с другом - при взаимодействии их время жизни катастрофически уменьшается. В итоге самый максимум на данный день - это квантовые компьютеры с парой десятков кубитов.

Однако, есть квантовые компьютеры от D-Wave, которые имеют 1000 кубитов, но, вообще говоря, настоящими квантовыми компьютерами они не являются, ибо не используют принципы квантовой запутанности, поэтому они не могут работать по классическим квантовым алгоритмам:


Но все же такие устройства оказываются ощутимо (в тысячи раз) мощнее обычных ПК, что можно считать прорывом. Однако заменят пользовательские устройства они ох как не скоро - для начала нам нужно или научиться создавать условия для работы таких устройств дома, или же наоборот, «заставить» работать такие устройства в привычных нам условиях. Шаги во втором направлении уже были сделаны - в 2013 году был создан первый двухкубитный квантовый компьютер на алмазе с примесями, работающий при комнатной температуре. Однако увы - это всего лишь опытный образец, да и 2 кубита - маловато для вычислений. Так что ждать квантовых ПК еще очень и очень долго.

Квантовый компьютер - вычислительное устройство, которое использует явления квантовой суперпозиции и квантовой запутанности для передачи и обработки данных. Полноценный универсальный квантовый компьютер является пока гипотетическим устройством, сама возможность построения которого связана с серьёзным развитием квантовой теории в области многих частиц и сложных экспериментов; разработки в данной области связаны с новейшими открытиями и достижениями современной физики. На настоящий момент были практически реализованы лишь единичные экспериментальные системы, исполняющие фиксированный алгоритм небольшой сложности.

В 1931 году американский писатель Чарльз Форт впервые описал понятие телепортации в одном из своих романов. С тех самых пор придуманный Фортом термин стал активно использоваться в фантастической литературе, постепенно становясь не только литературным понятием, но и по-настоящему научным. Так, на сегодняшний день постепенно становится не вымыслом, а настоящей реальностью.

Все еще остаются мечтой, но эпоха квантовых коммуникаций уже наступила. Новый эксперимент, проведенный в Париже, впервые показал, что квантовое сообщение превосходит классические методы передачи информации.

«Мы первыми продемонстрировали квантовый перевес в передаче информации, которая нужна двум сторонам для выполнения задачи», говори Элени Диаманти, инженер-электрик из Университета Сорбонны и соавтор исследования.

О квантовых вычислениях, по крайней мере в теории, говорят уже несколько десятилетий. Современные типы машин, использующие неклассическую механику для обработки потенциально немыслимых объемов данных, стали большим прорывом. По мнению разработчиков, их реализация оказалась, пожалуй, самой сложной технологией из когда-либо созданных. Квантовые процессоры работают на уровнях материи, о которых человечество узнало всего 100 лет назад. Потенциал таких вычислений огромен. Использование причудливых свойств квантов позволит ускорить расчеты, поэтому многие задачи, которые в настоящее время классическим компьютерам не по силам, будут решены. И не только в области химии и материаловедения. Уолл-стрит также проявляет заинтересованность.

Инвестиции в будущее

CME Group проинвестировала ванкуверскую компанию 1QB Information Technologies Inc., разрабатывающую программное обеспечение для процессоров квантового типа. По мнению инвесторов, такие вычисления, вероятно, окажут наибольшее влияние на отрасли, которые работают с большими объемами чувствительных ко времени данных. Примером таких потребителей являются финансовые учреждения. Goldman Sachs инвестировал в D-Wave Systems, а компания In-Q-Tel финансируется ЦРУ. Первая производит машины, которые делают то, что называется «квантовым отжигом», т. е. решает низкоуровневые задачи оптимизации с помощью квантового процессора. Intel тоже занимается инвестированием в данную технологию, хотя считает ее реализацию делом будущего.

Зачем это нужно?

Причина, по которой квантовые вычисления являются столь захватывающими, кроется в их идеальном сочетании с машинным обучением. В настоящее время это основное приложение для подобных расчетов. Отчасти самой идеи квантового компьютера - использование физического устройства для поиска решений. Иногда данную концепцию объясняют на примере игры Angry Birds. Для имитации гравитации и взаимодействия сталкивающихся объектов ЦПУ планшета использует математические уравнения. Квантовые процессоры ставят такой подход с ног на голову. Они «бросают» несколько птиц и смотрят, что происходит. В микрочип записывается птицы, их бросают, какова оптимальная траектория? Затем проверяются все возможные решения или, по крайней мере, очень большое их сочетание, и выдается ответ. В квантовом компьютере не математик, вместо него работают законы физики.

Как это функционирует?

Основные строительные блоки нашего мира - квантово-механические. Если посмотреть на молекулы, то причина, по которой они образуются и остаются стабильными - взаимодействие их электронных орбиталей. Все квантово-механические расчеты содержатся в каждой из них. Их количество растет экспоненциально росту числа моделируемых электронов. Например, для 50 электронов существует 2 в 50-й степени возможных вариантов. Это феноменально поэтому рассчитать его сегодня нельзя. Подключение теории информации к физике может указать путь к решению таких задач. 50-кубитовному компьютеру это по силам.

Заря новой эры

Согласно Лэндону Даунсу, президенту и соучредителю компании 1QBit, квантовый процессор - это возможность использовать вычислительные мощности субатомного мира, что имеет огромное значение для получения новых материалов или создания новых лекарств. Происходит переход от парадигмы открытий к новой эре дизайна. Например, квантовые вычисления можно использовать для моделирования катализаторов, которые позволяют извлекать углерод и азот из атмосферы, и тем самым помочь остановить глобальное потепление.

На передовой прогресса

Сообщество разработчиков данной технологии чрезвычайно взволновано и занято активной деятельностью. Команды по всему миру в стартапах, корпорациях, университетах и правительственных лабораториях наперегонки строят машины, в которых используются различные подходы к обработке квантовой информации. Созданы сверхпроводящие кубитовые чипы и кубиты на захваченных ионах, которыми занимаются исследователи из Университета штата Мэриленд и Национального института стандартов и технологий США. Microsoft разрабатывает топологический подход под названием Station Q, целью которого является применение неабелева аниона, существование которого еще окончательно не доказано.

Год вероятного прорыва

И это только начало. По состоянию на конец мая 2017 г. количество процессоров квантового типа, которые однозначно делают что-то быстрее или лучше, чем классический компьютер, равно нулю. Такое событие установит «квантовое превосходство», но пока оно не произошло. Хотя вероятно, что это может свершиться еще в этом году. Большинство инсайдеров говорит, что явным фаворитом является группа Google во главе с профессором физики Калифорнийского университета в Санта-Барбаре Джоном Мартини. Ее цель - достижение вычислительного превосходства с помощью 49-кубитного процессора. К концу мая 2017 г. команда успешно тестировала 22-кубитный чип в качестве промежуточного шага к разборке классического суперкомпьютера.

С чего все началось?

Идее использования квантовой механики для обработки информации уже десятки лет. Одно из ключевых событий произошло в 1981 году, когда IBM и MIT совместно организовали конференцию по физике вычислений. Знаменитый физик предложил построить квантовый компьютер. По его словам, для моделирования следует воспользоваться средствами квантовой механики. И это прекрасная задача, поскольку не выглядит такой простой. У квантового процессора принцип действия основан на нескольких странных свойствах атомов - суперпозиции и запутанности. Частица может находиться в двух состояниях одновременно. Однако при измерении она окажется только в одном их них. И невозможно предугадать, в каком, кроме как с позиции теории вероятности. Этот эффект лежит в основе мысленного эксперимента с котом Шредингера, который находится в коробке одновременно живым и мертвым до тех пор, пока наблюдатель украдкой туда не заглянет. Ничто в повседневной жизни не работает подобным образом. Тем не менее, около 1 млн экспериментов, проведенных с начала ХХ века, показывают, что суперпозиция действительно существует. И следующим шагом будет выяснение того, как использовать эту концепцию.

Квантовый процессор: описание работы

Классические биты могут принимать значение 0 или 1. Если пропустить их строку через «логические вентили» (И, ИЛИ, НЕ и т. д.), то можно умножать числа, рисовать изображения и т. п. Кубит же может принимать значения 0, 1 или оба одновременно. Если, скажем, 2 кубита запутаны, то это делает их совершенно коррелированными. Процессор квантового типа может использовать логические вентили. Т. н. вентиль Адамара, например, помещает кубит в состояние совершенной суперпозиции. Если суперпозицию и запутанность совместить с умно расположенными квантовыми вентилями, то начинает раскрываться потенциал субатомных вычислений. 2 кубита позволяют исследовать 4 состояния: 00, 01, 10 и 11. Принцип работы квантового процессора таков, что выполнение логической операции дает возможность работать со всеми положениями сразу. И число доступных состояний равно 2 в степени количества кубитов. Так что, если сделать 50-кубитный универсальный квантовый компьютер, то теоретически можно исследовать все 1,125 квадриллиона комбинаций одновременно.

Кудиты

Квантовый процессор в России видят несколько иначе. Ученые из МФТИ и Российского квантового центра создали «кудиты», представляющие собой несколько «виртуальных» кубитов с различными «энергетическими» уровнями.

Амплитуды

Процессор квантового типа обладает тем преимуществом, что квантовая механика базируется на амплитудах. Амплитуды подобны вероятности, но они также могут быть отрицательными и комплексными числами. Так что, если необходимо рассчитать вероятность события, можно сложить амплитуды всевозможных вариантов их развития. Идея квантовых вычислений заключается в попытке настройки таким образом, чтобы некоторые пути к неправильным ответам имели положительную амплитуду, а некоторые - отрицательную, и поэтому они бы компенсировали друг друга. А пути, ведущие к правильному ответу, имели бы амплитуды, которые находятся в фазе друг с другом. Хитрость в том, что необходимо все организовать, не зная заранее, какой ответ правильный. Так что экспоненциальность квантовых состояний в сочетании с потенциалом интерференции между положительными и отрицательными амплитудами является преимуществом вычислений данного типа.

Алгоритм Шора

Есть много задач, которые компьютер не в состоянии решить. Например, шифрование. Проблема заключается в том, что не так легко найти простые множители 200-значного числа. Даже если ноутбук работает с отличным ПО, то, возможно, придется ждать годы, чтобы найти ответ. Поэтому еще одной вехой в квантовых вычислениях стал алгоритм, опубликованный в 1994 г. Питером Шором, теперь профессором математики в MIT. Его метод заключается в поиске множителей большого числа с помощью квантового компьютера, которого тогда еще не существовало. По сути, алгоритм выполняет операции, которые указывают на области с правильным ответом. В следующем году Шор открыл способ квантовой коррекции ошибок. Тогда многие поняли, что это - альтернативный способ вычислений, который в некоторых случаях может быть более мощным. Тогда последовал всплеск интереса со стороны физиков к созданию кубитов и логических вентилей между ними. И вот, два десятилетия спустя, человечество стоит на пороге создания полноценного квантового компьютера.

Наука не стоит на месте и, казалось бы, то, что считалось вчера мистикой сегодня неоспоримая реальность. Так и сейчас, мифы о параллельных мирах могут стать обычным фактом в дальнейшем. Считается, что к этому утверждению помогут прийти исследования в области создания квантового компьютера. Лидерство занимает Япония , более 70% всех исследований приходится на эту страну. Сущность этого открытия больше понятна тем, кто так или иначе связан с физикой. Но большинство из нас оканчивало среднюю школу, где в учебнике 11 класса раскрываются некоторые вопросы квантовой физики.

С чего все начиналось

Напомним, что начало положили два основных открытия, за которые их авторы удостоились Нобелевской премии. В 1918 году Макс Планк открыл квант, а Альберт Эйнштейн в 1921 году фотон. Идея создания квантового компьютера зародилась в 1980 году , когда было доказано об истинности квантовой теории. А идеи начали воплощаться в практику только в 1998 году . Массовые, и при этом достаточно результативные работы, проводятся только в последние 10 лет .

Основные принципы понятны, но с каждым шагом вперед возникает все больше проблем, разрешение которых занимает достаточно много времени, хотя этой проблемой занимается очень много лабораторий во всем мире. Требования к такому компьютеру очень большие, так как точность измерений должна быть очень высокой и нужно свести к минимуму количество внешних воздействий, каждое из которых будет искажать работу квантовой системы.

ЗАЧЕМ НУЖЕН КВАНТОВЫЙ КОМПЬЮТЕР?

На чем основана работа квантового компьютера

Все, в большей или меньшей степени, имеют понятие, как работает обычный компьютер. Смысл его заключается в использование двоичного кодирования, где наличие определенного значения напряжения принимается за 1, а отсутствие 0. , выраженное 0 или 1, считается битом. Работа же квантового компьютера связана с понятием спина. Для кого физика ограничивается школьными знаниями, могут утверждать о существовании трех элементарных частицах и о наличии у них простых характеристик, как масса и заряд.

Но ученые-физики постоянно пополняют класс элементарных частиц и их характеристик, одним из которых является спин. И определенное направление спина частицы принимается за 1, а обратное ему за 0. Это схоже с устройством транзистора. Основной элемент будет уже называться квантовым битом или кубитом. В качестве него могут выступать фотоны, атомы, ионы, ядра атомов.

Главным условием здесь является наличие двух квантовых состояний. Изменение состояния определенного бита в обычном компьютере не ведет к изменению других, а вот в квантовом компьютере изменение одной введет к изменению состояния других частиц. Этим изменением можно управлять, и представьте, что таких частиц сотни.

Представьте только, во сколько раз возрастет производительность такой машины. Но создание целостного новейшего компьютера – это только гипотеза, предстоит большая работа физиков в той области квантовой механики, которая называется многочастичной. Первый мини квантовый компьютер состоял из 16 кубитов . В последнее время выпущены компьютеры с использованием 512 кубитов, но и они уже используются для повышения быстроты выполнения сложнейших операций вычисления. Quipper – язык разработанный специально для таких машин.

Последовательность выполняемых операций

В создании компьютера нового поколения выделяют четыре направления, которые отличаются тем, что выступает в роли логических кубитов:

  1. направление спинов частиц, составляющих основу атома;
  2. наличие или отсутствие куперовской пары в установленном месте пространства;
  3. в каком состоянии находится внешний электрон;
  4. различные состояния фотона.

А теперь рассмотрим схему, по которой работает компьютер. Для начала берется какой-нибудь набор кубитов и записываются их начальные параметры. Выполняются преобразования с использованием логических операций, записывается полученное значение, являющееся результатом выдаваемым компьютером. В роли проводов выступают кубиты, а преобразования составляют логические блоки. Такой процессор был предложен Д. Дойчем , который в 1995 году смог создать цепочку способную выполнять любые вычисления на квантовом уровне. Но такая система дает небольшие погрешности, которые можно немного уменьшить, увеличив количество операций задействованных в алгоритме.

Как Работает Квантовый Компьютер?

Чего достигли

Пока разработаны только два типа квантовых компьютеров, но наука не стоит на месте. Работа обеих машин строится на квантовых явлениях:

  1. связано со сверхпроводимостью. При его нарушениях наблюдается квантование ;
  2. основано на таком свойстве как когерентность. Быстрота вычисления таких компьютеров увеличивается вдвое по сравнению с количеством кубитов.

Второй тип из рассмотренных считается приоритетным в области создания квантовых компьютеров.

Достижения различных стран.

Если вкратце, то достижения последних 10 лет значительные. Можно отметить созданный в Америке двухкубитный компьютер с программным обеспечением. Им же оказалось под силу выпуск двухкубитного компьютера с кристаллом алмаза. В роли кубитов применялось направление спина частиц азота, его составляющих: ядра и электрона. Чтобы обеспечить весомую защиту была разработана очень сложная система позволяющая давать результат с 95% точностью.

ICQT 2017. Джон Мартинис, Google: Квантовый компьютер: жизнь после закона Мура

Для чего все это нужно

Уже говорилось о создании квантовых компьютеров. Эти компьютеры не являются результатом того к чему стремились, но своего покупателя они нашли. Американская компания Lockheed Martin , специализирующаяся в области обороны заплатила 10 млн. долларов. Их приобретение способно находить ошибки сложнейшей программе, установленной на истребителе F-35 . Google с помощью своего приобретения хочет запустить программы для машинного обучения.

Будущее

В разработке квантового компьютера очень заинтересованы крупные компании и государство. Оно приведет к новым открытиям в области разработки криптографического алгоритма. Будет это на руку государству или хакерам решит время. Но работа по созданию и распознаванию криптоключей будет выполняться моментально. Решатся много проблем, связанных с банковской картой.

Сообщения будут передаваться с огромной скоростью и не будет проблем связаться с любой точкой на земном шаре, а может даже за ее пределами.

Такой компьютер поможет сделать , особенно в расшифровке генетического кода. Это приведет к разрешению многих медицинских проблем.

И, конечно же, приоткроет дверь в страну мистических тайн, параллельных миров.

Нас ждут сильнейшие потрясения. Все к чему мы привыкли, является только частью того мира, которому уже дали название Квантовой реальности. Выйти за рамки материального мира помогут , которые и составляют принцип работы квантового компьютера.

Квантовый компьютер — это не просто компьютер будущего поколения, это нечто гораздо большее. Не только с точки зрения применения новейших технологий, но и с точки зрения его неограниченных, невероятных, фантастических возможностей, способных не только изменить мир людей, но даже … создавать иную реальность.

Как известно, современные компьютеры используют память, представленную в двоичном коде: 0 и 1. Точно так же как в азбуке Морзе — точка и титре. С помощью двух знаков можно зашифровать любую информацию, путем варьирования их сочетаний.

В памяти современного компьютера миллиарды этих битов. Но каждый из них может быть в одном из двух состояний — либо ноль, либо один. Как лампочка: либо включена, либо выключена.

Квантовый бит (кубит) — наименьший элемент хранения информации в компьютере будущего. Единицей информации в квантовом компьютере теперь может быть не только нуль или единица, а то и другое одновременно .

Одна ячейка выполняет два действия, две -четыре, четыре — шестнадцать и т. д. Именно поэтому квантовые системы могут работать в два раза быстрее и с большими объемами информации, чем современные.

Впервые «измерили» кубит (Q-bit) ученые Российского квантового центра (РКЦ) и Лаборатории сверхпроводящих мета материалов.

С технической стороны, кубит, — это диаметром в несколько микрон металлическое кольцо с разрезами, напылённое на полупроводник. Кольцо охлаждается до сверхнизких температур для того, что бы оно стало сверхпроводником. Допускаем, что ток, протекающий по кольцу, идет по часовой стрелке — это 1. Против — 0. То есть два обычных состояния.

Через кольцо пропустили микроволновое излучение. На выходе из кольца этого излучения, измеряли сдвиг тока по фазе. Оказалось, что вся эта система может находиться как в двух основных, так и смешанном состоянии: тем и другим одновременно!!! В науке это называется принципом суперпозиции.

Эксперимент русских ученых (аналогичный провели и ученые других стран), доказал, что кубит имеет право на жизнь. Создание кубита подвело к идее и приблизило ученых к мечте по созданию оптического квантового компьютера. Осталось его только сконструировать и создать. Но не все так просто…

Сложности, проблемы в создании квантового компьютера

Если требуется, к примеру, обсчитать миллиард вариантов в современном компьютере, то ему нужно «прокрутить» миллиард подобных циклов. На квантовом компьютере имеется принципиальное отличие, он может просчитывать все эти варианты одновременно.
Один из главных принципов, на которых будет работать квантовый компьютер, — это принцип суперпозиции и иначе, как магическим, его не назовешь!
Он означает, что один и тот же человек может находится в разных местах в одно и то же время. Физики шутят: » Если вас не шокирует квантовая теория, значит вы ее не поняли».

Внешний вид создаваемых сейчас квантовых компьютеров разительно отличается от классических. Они похожи… на самогонный аппарат:

Такая конструкция, сотоящая из медных и золотых частей, змеевиков-охладителей и пр. характерных деталей, разумеется не устраивает его создателей. Одна из основных задач ученых сделать ее компактной и дешевой. Что бы это произошло, нужно решить несколько проблем.

Проблема первая — неустойчивость суперпозиций

Все эти квантовые суперпозиции очень «нежные». Как только на них начинаешь смотреть, как только они начинают взаимодействовать с другими объектами, так они сразу разрушаются. Становятся, как бы классическими. Это одна из самых важных проблем в создании квантового компьютера.

Проблема вторая — требуется сильное охлаждение

Второе препятствие — для достижения стабильной работы квантового компьютера. в том виде, какой имеем на сегодня, требуется его сильное охлаждение. Сильное, это создание аппаратуры, в которой поддерживается температура близкая к абсолютному нулю — минус 273 градуса по Цельсию! Поэтому сейчас прототипы таких компьютеров, со своими криогенно-вакуумными установками, выглядят очень громоздко:

Однако ученые уверены, что вскоре все технические проблемы будут решены и однажды квантовые компьютеры, обладающие огромной вычислительной мощью, заменят современные.

Некоторые технические решения в решении проблем

К настоящему времени, ученые нашли ряд существенных решений в решении вышеизложенных проблем. Эти технологические находки, результат сложной, а иногда и длительной, напряженной работы ученых, заслуживает всяческого уважения.

Лучший путь к совершенствованию работы кубита… бриллианты

Все очень похоже на известную песню о девушках и бриллиантах. Главное, над чем сейчас работают ученые -поднять время жизни кубита, а так же «заставить» работать квантовый компьютер при обычных температурах . Да, для связи между квантовыми компьютерами нужны бриллианты! Для всего этого пришлось создавать и использовать искусственные алмазы сверх высокой прозрачности. С их помощью смогли продлить жизнь кубита до двух секунд. Эти скромные достижения: две секунды жизни кубита и работа компьютера при комнатной температуре, на самом деле революция в науке.

Суть эксперимента французского ученого Сержа Ароша основана на том, что он сумел показать всему миру, что свет (квантовый поток фотонов), проходящий между двумя специально созданными им зеркалами, не теряет квантового состояния.

Заставив свет пройти 40 000 км между этими зеркалами, он определил, все происходит без потери квантового состояния. Свет состоит из фотонов и до сих пор никто не мог выяснить, теряют ли они свое квантовое состояние при прохождении определенного расстояния. Лауреат Нобелевской премии Серж Арош: «Один фотон находится в нескольких местах одновременно , нам удалось это зафиксировать.» На самом деле это и есть принцип суперпозиции . «В нашем большом мире такое невозможно. А в микро-мире — другие законы.», — говорит Арош.


Внутри резонатора находились классические атомы, которые можно измерить. По поведению атомов физик научился определять и измерять неуловимые квантовые частицы. До экспериментов Ароша считалось, что наблюдение за квантами невозможно. После эксперимента — заговорили о покорении фотонов, то есть о приближении эры квантовых компьютеров.

Почему многие с нетерпением ждут создания полноценного квантового генератора, а другие его боятся

Квантовый компьютер подарит человечеству огромные возможности

Квантовый компьютер откроет перед человечеством необозримые возможности. Например, поможет создать искусственный разум, о котором столько времени бредят фантасты. Или смоделировать вселенную. Целиком. По самым скромным прогнозам он позволит заглянуть за грани возможного. Давайте представим мир, где можно смоделировать абсолютно все, что пожелаешь: спроектировать молекулу, сверхпрочный металл, быстро разлагающийся пластик, придумать лекарства от неизлечимых болезней. Машина смоделирует весь наш мир, целиком, до последнего атома. Можно даже смоделировать другой мир, пусть даже виртуальный.

Квантовый компьютер сможет стать орудием Апокалипсиса

Многие люди, вникнув в суть квантовой технологии, боятся ее по разным причинам. Уже сейчас компьютеризация и все околокомпьютерные технологии, пугают обывателя. Достаточно вспомнить скандалы о том, как специальные службы с помощью встроенных программ в ПК и даже бытовые приборы, организуют слежку и сбор данных об их потребителях. Например во многих странах запретили всем известные очки — ведь они являются идеальным средством для скрытой съемки и слежки. Уже сейчас, наверняка, каждый житель любой страны, а тем более пользователь в Сети, занесен в какую-нибудь базу данных. Более того и вполне реально, определенные службы могут просчитывать каждое его действие в интернете.

Но для квантовых компьютеров не будет тайн! Вообще никаких. Вся компьютерная безопасность держится на очень длинных числах-паролях. Что бы получить подобрать ключ к коду, обычному компьютеру понадобиться миллион лет. Но с помощью квантового это сможет сделать любой и мгновенно. Получается, что в мире станет совершенно небезопасно: ведь в современном мире все контролируется с помощью компьютеров: банковские переводы, полеты самолетов, фондовые биржи, ракетно-ядерное оружие! Вот и получается: кто владеет информацией, тот владеет Миром. Кто первый — тот и бог. Квантовый компьютер станет сильнее любого комплекса вооружений . На Земле может начаться (или уже началась) новая гонка вооружений, только теперь не ядерная, а компьютерная.

Дай нам Бог выйти из нее благополучно…


Close